Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness

  1. Oluwaseun Akeju  Is a corresponding author
  2. Marco L Loggia
  3. Ciprian Catana
  4. Kara J Pavone
  5. Rafael Vazquez
  6. James Rhee
  7. Violeta Contreras Ramirez
  8. Daniel B Chonde
  9. David Izquierdo-Garcia
  10. Grae Arabasz
  11. Shirley Hsu
  12. Kathleen Habeeb
  13. Jacob M Hooker
  14. Vitaly Napadow
  15. Emery Brown
  16. Patrick L Purdon
  1. Massachusetts General Hospital, Harvard Medical School, United States
  2. MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, United States
  3. Massachusetts General Hospital, United States
  4. Massachusetts Institute of Technology, United States

Abstract

Understanding the neural basis of consciousness is fundamental to neuroscience research. Disruptions in cortico-cortical connectivity have been suggested as a primary mechanism of unconsciousness. By using a novel combination of positron emission tomography and functional magnetic resonance imaging, we studied anesthesia-induced unconsciousness and recovery using the α2-agonist dexmedetomidine. During unconsciousness, cerebral metabolic rate of glucose and cerebral blood flow were preferentially decreased in the thalamus, the Default Mode Network (DMN), and the bilateral Frontoparietal Networks (FPNs). Cortico-cortical functional connectivity within the DMN and FPNs was preserved. However, DMN thalamo-cortical functional connectivity was disrupted. Recovery from this state was associated with sustained reduction in cerebral blood flow, and restored DMN thalamo-cortical functional connectivity. We report that loss of thalamo-cortical functional connectivity is sufficient to produce unconsciousness.

Article and author information

Author details

  1. Oluwaseun Akeju

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    For correspondence
    oluwaseun.akeju@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Marco L Loggia

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ciprian Catana

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kara J Pavone

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rafael Vazquez

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. James Rhee

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Violeta Contreras Ramirez

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Daniel B Chonde

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. David Izquierdo-Garcia

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Grae Arabasz

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Shirley Hsu

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Kathleen Habeeb

    Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jacob M Hooker

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Vitaly Napadow

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Emery Brown

    Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Patrick L Purdon

    Massachusetts Institute of Technology, Cambridge,, United States
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The Human Research Committee and the Radioactive Drug Research Committee at the Massachusetts General Hospital approved the study protocol. After an initial email/phone screen, potential study subjects were invited to participate in a screening visit. At the screening visit, informed consent including the consent to publish was requested after the nature and possible consequences of the study was explained. All subjects provided informed consent and were American Society of Anesthesiology Physical Status I with Mallampati Class I airway anatomy.

Copyright

© 2014, Akeju et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,517
    views
  • 689
    downloads
  • 140
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oluwaseun Akeju
  2. Marco L Loggia
  3. Ciprian Catana
  4. Kara J Pavone
  5. Rafael Vazquez
  6. James Rhee
  7. Violeta Contreras Ramirez
  8. Daniel B Chonde
  9. David Izquierdo-Garcia
  10. Grae Arabasz
  11. Shirley Hsu
  12. Kathleen Habeeb
  13. Jacob M Hooker
  14. Vitaly Napadow
  15. Emery Brown
  16. Patrick L Purdon
(2014)
Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness
eLife 3:e04499.
https://doi.org/10.7554/eLife.04499

Share this article

https://doi.org/10.7554/eLife.04499

Further reading

    1. Neuroscience
    Kayson Fakhar, Fatemeh Hadaeghi ... Claus C Hilgetag
    Research Article

    Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain’s most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.

    1. Neuroscience
    Poortata Lalwani, Thad Polk, Douglas D Garrett
    Research Article

    Moment-to-moment neural variability has been shown to scale positively with the complexity of stimulus input. However, the mechanisms underlying the ability to align variability to input complexity are unknown. Using a combination of behavioral methods, computational modeling, fMRI, MR spectroscopy, and pharmacological intervention, we investigated the role of aging and GABA in neural variability during visual processing. We replicated previous findings that participants expressed higher variability when viewing more complex visual stimuli. Additionally, we found that such variability modulation was associated with higher baseline visual GABA levels and was reduced in older adults. When pharmacologically increasing GABA activity, we found that participants with lower baseline GABA levels showed a drug-related increase in variability modulation while participants with higher baseline GABA showed no change or even a reduction, consistent with an inverted-U account. Finally, higher baseline GABA and variability modulation were jointly associated with better visual-discrimination performance. These results suggest that GABA plays an important role in how humans utilize neural variability to adapt to the complexity of the visual world.