Heterochromatin assembly and transcriptome repression by Set1 in coordination with a class II histone deacetylase

Abstract

Histone modifiers play essential roles in controlling transcription and organizing eukaryotic genomes into functional domains. Here, we show that Set1, the catalytic subunit of the highly conserved Set1C/COMPASS complex responsible for histone H3K4 methylation (H3K4me), behaves as a repressor of the transcriptome largely independent of Set1C and H3K4me in the fission yeast Schizosaccharomyces pombe. Intriguingly, while Set1 is enriched at highly expressed and repressed loci, Set1 binding levels do not generally correlate with the levels of transcription. We show that Set1 is recruited by the ATF/CREB homolog Atf1 to heterochromatic loci and promoters of stress-response genes. Moreover, we demonstrate that Set1 coordinates with the class II histone deacetylase Clr3 in heterochromatin assembly at prominent chromosomal landmarks and repression of the transcriptome that includes Tf2 retrotransposons, noncoding RNAs, and regulators of development and stress-responses. Our study delineates a molecular framework for elucidating the functional links between transcriptome control and chromatin organization.

Article and author information

Author details

  1. David R Lorenz

    Department of Biology, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lauren F Meyer

    Department of Biology, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick J R Grady

    Department of Biology, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michelle M Meyer

    Department of Biology, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hugh P Cam

    Department of Biology, Boston College, Chestnut Hill, United States
    For correspondence
    hugh.cam@bc.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ali Shilatifard, Northwestern University Feinberg School of Medicine, United States

Version history

  1. Received: August 26, 2014
  2. Accepted: December 12, 2014
  3. Accepted Manuscript published: December 15, 2014 (version 1)
  4. Version of Record published: January 14, 2015 (version 2)

Copyright

© 2014, Lorenz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,894
    views
  • 391
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David R Lorenz
  2. Lauren F Meyer
  3. Patrick J R Grady
  4. Michelle M Meyer
  5. Hugh P Cam
(2014)
Heterochromatin assembly and transcriptome repression by Set1 in coordination with a class II histone deacetylase
eLife 3:e04506.
https://doi.org/10.7554/eLife.04506

Share this article

https://doi.org/10.7554/eLife.04506

Further reading

    1. Chromosomes and Gene Expression
    Miin S Lin, Se-Young Jo ... Vineet Bafna
    Research Article

    Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here, we show that ecDNA-containing tumors impact four major biological processes. Specifically, ecDNA-containing tumors up-regulate DNA damage and repair, cell cycle control, and mitotic processes, but down-regulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA-containing tumors, shedding light on molecular processes that give rise to their development and progression.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Mathew Thayer, Michael B Heskett ... Phillip A Yates
    Research Article

    ASARs are a family of very-long noncoding RNAs that control replication timing on individual human autosomes, and are essential for chromosome stability. The eight known ASAR lncRNAs remain closely associated with their parent chromosomes. Analysis of RNA-protein interaction data (from ENCODE) revealed numerous RBPs with significant interactions with multiple ASAR lncRNAs, with several hnRNPs as abundant interactors. An ~7 kb domain within the ASAR6-141 lncRNA shows a striking density of RBP interaction sites. Genetic deletion and ectopic integration assays indicate that this ~7 kb RNA binding protein domain contains functional sequences for controlling replication timing of entire chromosomes in cis. shRNA-mediated depletion of 10 different RNA binding proteins, including HNRNPA1, HNRNPC, HNRNPL, HNRNPM, HNRNPU, or HNRNPUL1, results in dissociation of ASAR lncRNAs from their chromosome territories, and disrupts the synchronous replication that occurs on all autosome pairs, recapitulating the effect of individual ASAR knockouts on a genome-wide scale. Our results further demonstrate the role that ASARs play during the temporal order of genome-wide replication, and we propose that ASARs function as essential RNA scaffolds for the assembly of hnRNP complexes that help maintain the structural integrity of each mammalian chromosome.