Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant

  1. Mariko Izumo
  2. Martina Pejchal
  3. Andrew C Schook
  4. Ryan P Lange
  5. Jacqueline A Walisser
  6. Takashi R Sato
  7. Xiaozhong Wang
  8. Christopher A Bradfield
  9. Joseph S Takahashi  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Northwestern University, United States
  3. University of Wisconsin, United States
  4. University of Tübingen, Germany
  5. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States

Abstract

In order to assess the contribution of a central clock in the hypothalamic suprachiasmatic nucleus (SCN) to circadian behavior and the organization of peripheral clocks, we generated forebrain/SCN-specific Bmal1 knockout mice by using floxed Bmal1 and pan-neuronal Cre lines. The forebrain knockout mice showed >90% deletion of BMAL1 in the SCN and exhibited an immediate and complete loss of circadian behavior in constant conditions. Circadian rhythms in peripheral tissues persisted, but became desynchronized and damped in constant darkness. The loss of synchrony was rescued by light/dark cycles, and partially by restricted feeding (only in the liver and kidney but not in the other tissues) in a distinct manner. These results suggest that the forebrain/SCN is essential for internal temporal order of robust circadian programs in peripheral clocks and that individual peripheral clocks are affected differently by light and feeding in the absence of a functional oscillator in the forebrain.

Article and author information

Author details

  1. Mariko Izumo

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Martina Pejchal

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew C Schook

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ryan P Lange

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jacqueline A Walisser

    McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Takashi R Sato

    Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaozhong Wang

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Christopher A Bradfield

    McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Joseph S Takahashi

    Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    joseph.takahashi@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal care and use procedures were in accordance with guidelines of the Northwestern University (Protocol 2006-0035) and UT Southwestern Institutional Animal Care and Use Committees (Protocols 2009-0054 and 2012-0090).

Reviewing Editor

  1. Louis Ptáček, University of California, San Francisco, United States

Publication history

  1. Received: September 9, 2014
  2. Accepted: December 18, 2014
  3. Accepted Manuscript published: December 19, 2014 (version 1)
  4. Version of Record published: January 21, 2015 (version 2)

Copyright

© 2014, Izumo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,294
    Page views
  • 982
    Downloads
  • 109
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mariko Izumo
  2. Martina Pejchal
  3. Andrew C Schook
  4. Ryan P Lange
  5. Jacqueline A Walisser
  6. Takashi R Sato
  7. Xiaozhong Wang
  8. Christopher A Bradfield
  9. Joseph S Takahashi
(2014)
Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant
eLife 3:e04617.
https://doi.org/10.7554/eLife.04617

Further reading

    1. Neuroscience
    Lyndsey Aponik-Gremillion, Yvonne Y Chen ... Brett L Foster
    Research Article

    Posterior cingulate cortex (PCC) is an enigmatic region implicated in psychiatric and neurological disease, yet its role in cognition remains unclear. Human studies link PCC to episodic memory and default mode network (DMN), while findings from the non-human primate emphasize executive processes more associated with the cognitive control network (CCN) in humans. We hypothesized this difference reflects an important functional division between dorsal (executive) and ventral (episodic) PCC. To test this, we utilized human intracranial recordings of population and single unit activity targeting dorsal PCC during an alternated executive/episodic processing task. Dorsal PCC population responses were significantly enhanced for executive, compared to episodic, task conditions, consistent with the CCN. Single unit recordings, however, revealed four distinct functional types with unique executive (CCN) or episodic (DMN) response profiles. Our findings provide critical electrophysiological data from human PCC, bridging incongruent views within and across species, furthering our understanding of PCC function.

    1. Neuroscience
    Zhiyao Gao, Li Zheng ... Elizabeth Jefferies
    Research Article

    Understanding how thought emerges from the topographical structure of the cerebral cortex is a primary goal of cognitive neuroscience. Recent work has revealed a principal gradient of intrinsic connectivity capturing the separation of sensory-motor cortex from transmodal regions of the default mode network (DMN); this is thought to facilitate memory-guided cognition. However, studies have not explored how this dimension of connectivity changes when conceptual retrieval is controlled to suit the context. We used gradient decomposition of informational connectivity in a semantic association task to establish how the similarity in connectivity across brain regions changes during familiar and more original patterns of retrieval. Multivoxel activation patterns at opposite ends of the principal gradient were more divergent when participants retrieved stronger associations; therefore, when long-term semantic information is sufficient for ongoing cognition, regions supporting heteromodal memory are functionally separated from sensory-motor experience. In contrast, when less related concepts were linked, this dimension of connectivity was reduced in strength as semantic control regions separated from the DMN to generate more flexible and original responses. We also observed fewer dimensions within the neural response towards the apex of the principal gradient when strong associations were retrieved, reflecting less complex or varied neural coding across trials and participants. In this way, the principal gradient explains how semantic cognition is organised in the human cerebral cortex: the separation of DMN from sensory-motor systems is a hallmark of the retrieval of strong conceptual links that are culturally shared.