Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells

  1. Wenxian Fu
  2. Julia Farache
  3. Susan M Clardy
  4. Kimie Hattori
  5. Palwinder Mander
  6. Kevin Lee
  7. Inmaculada Rioja
  8. Ralph Weissleder
  9. Rab K Prinjha
  10. Christophe Benoist
  11. Diane Mathis  Is a corresponding author
  1. University of California, San Diego, United States
  2. Harvard Medical School, United States
  3. Massachusetts General Hospital, Harvard Medical School, United States
  4. GlaxoSmithKline, United Kingdom
  5. Pfizer, United States

Abstract

Epigenetic modifiers are an emerging class of anti-tumor drugs, potent in multiple cancer contexts. Their effect on spontaneously developing autoimmune diseases has been little explored. We report that a short treatment with I-BET151, a small-molecule inhibitor of a family of bromodomain-containing transcriptional regulators, irreversibly suppressed development of type-1 diabetes in NOD mice. The inhibitor could prevent or clear insulitis, but had minimal influence on the transcriptomes of infiltrating and circulating T cells. Rather, it induced pancreatic macrophages to adopt an anti-inflammatory phenotype, impacting the NF-κB pathway in particular. I-BET151 also elicited regeneration of islet β-cells, inducing proliferation and expression of genes encoding transcription factors key to β-cell differentiation/function. The effect on β cells did not require T cell infiltration of the islets. Thus, treatment with I-BET151 achieves a 'combination therapy,' currently advocated by many diabetes investigators, operating by a novel mechanism that coincidentally dampens islet inflammation and enhances β-cell regeneration.

Article and author information

Author details

  1. Wenxian Fu

    University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Julia Farache

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Susan M Clardy

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Kimie Hattori

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Palwinder Mander

    GlaxoSmithKline, Stevenage, United Kingdom
    Competing interests
    Palwinder Mander, GlaxoSmithKline has an ongoing interest in the therapeutic applications of BET-protein inhibitors.
  6. Kevin Lee

    Pfizer, Cambridge, United States
    Competing interests
    Kevin Lee, GlaxoSmithKline has an ongoing interest in the therapeutic applications of BET-protein inhibitors.
  7. Inmaculada Rioja

    GlaxoSmithKline, Stevenage, United Kingdom
    Competing interests
    Inmaculada Rioja, GlaxoSmithKline has an ongoing interest in the therapeutic applications of BET-protein inhibitors..
  8. Ralph Weissleder

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. Rab K Prinjha

    GlaxoSmithKline, Stevenage, United Kingdom
    Competing interests
    Rab K Prinjha, GlaxoSmithKline has an ongoing interest in the therapeutic applications of BET-protein inhibitors.
  10. Christophe Benoist

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  11. Diane Mathis

    Harvard Medical School, Boston, United States
    For correspondence
    diane_mathis@hms.harvard.edu
    Competing interests
    Diane Mathis, Reviewing editor, eLife.

Ethics

Animal experimentation: NOD/Lt mice were bred under specific-pathogen-free conditions in our animal facility at the New Research Building of Harvard Medical School, cared for in accordance with the ethical guidelines of the Institutional Animal Care and Use Committee (#02954). Relevant studies were also conducted in accordance with GSK's Policy on the Care, Welfare and Treatment of Laboratory Animals. NOD.Cg-Rag1<tm1mom> mice were maintained in our lab's colony at Jackson Laboratory.

Copyright

© 2014, Fu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,331
    views
  • 693
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenxian Fu
  2. Julia Farache
  3. Susan M Clardy
  4. Kimie Hattori
  5. Palwinder Mander
  6. Kevin Lee
  7. Inmaculada Rioja
  8. Ralph Weissleder
  9. Rab K Prinjha
  10. Christophe Benoist
  11. Diane Mathis
(2014)
Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells
eLife 3:e04631.
https://doi.org/10.7554/eLife.04631

Share this article

https://doi.org/10.7554/eLife.04631

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.