Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells

  1. Wenxian Fu
  2. Julia Farache
  3. Susan M Clardy
  4. Kimie Hattori
  5. Palwinder Mander
  6. Kevin Lee
  7. Inmaculada Rioja
  8. Ralph Weissleder
  9. Rab K Prinjha
  10. Christophe Benoist
  11. Diane Mathis  Is a corresponding author
  1. University of California, San Diego, United States
  2. Harvard Medical School, United States
  3. Massachusetts General Hospital, Harvard Medical School, United States
  4. GlaxoSmithKline, United Kingdom
  5. Pfizer, United States

Abstract

Epigenetic modifiers are an emerging class of anti-tumor drugs, potent in multiple cancer contexts. Their effect on spontaneously developing autoimmune diseases has been little explored. We report that a short treatment with I-BET151, a small-molecule inhibitor of a family of bromodomain-containing transcriptional regulators, irreversibly suppressed development of type-1 diabetes in NOD mice. The inhibitor could prevent or clear insulitis, but had minimal influence on the transcriptomes of infiltrating and circulating T cells. Rather, it induced pancreatic macrophages to adopt an anti-inflammatory phenotype, impacting the NF-κB pathway in particular. I-BET151 also elicited regeneration of islet β-cells, inducing proliferation and expression of genes encoding transcription factors key to β-cell differentiation/function. The effect on β cells did not require T cell infiltration of the islets. Thus, treatment with I-BET151 achieves a 'combination therapy,' currently advocated by many diabetes investigators, operating by a novel mechanism that coincidentally dampens islet inflammation and enhances β-cell regeneration.

Article and author information

Author details

  1. Wenxian Fu

    University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Julia Farache

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Susan M Clardy

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Kimie Hattori

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Palwinder Mander

    GlaxoSmithKline, Stevenage, United Kingdom
    Competing interests
    Palwinder Mander, GlaxoSmithKline has an ongoing interest in the therapeutic applications of BET-protein inhibitors.
  6. Kevin Lee

    Pfizer, Cambridge, United States
    Competing interests
    Kevin Lee, GlaxoSmithKline has an ongoing interest in the therapeutic applications of BET-protein inhibitors.
  7. Inmaculada Rioja

    GlaxoSmithKline, Stevenage, United Kingdom
    Competing interests
    Inmaculada Rioja, GlaxoSmithKline has an ongoing interest in the therapeutic applications of BET-protein inhibitors..
  8. Ralph Weissleder

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. Rab K Prinjha

    GlaxoSmithKline, Stevenage, United Kingdom
    Competing interests
    Rab K Prinjha, GlaxoSmithKline has an ongoing interest in the therapeutic applications of BET-protein inhibitors.
  10. Christophe Benoist

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  11. Diane Mathis

    Harvard Medical School, Boston, United States
    For correspondence
    diane_mathis@hms.harvard.edu
    Competing interests
    Diane Mathis, Reviewing editor, eLife.

Reviewing Editor

  1. Shimon Sakaguchi, Osaka University, Japan

Ethics

Animal experimentation: NOD/Lt mice were bred under specific-pathogen-free conditions in our animal facility at the New Research Building of Harvard Medical School, cared for in accordance with the ethical guidelines of the Institutional Animal Care and Use Committee (#02954). Relevant studies were also conducted in accordance with GSK's Policy on the Care, Welfare and Treatment of Laboratory Animals. NOD.Cg-Rag1<tm1mom> mice were maintained in our lab's colony at Jackson Laboratory.

Version history

  1. Received: September 5, 2014
  2. Accepted: November 19, 2014
  3. Accepted Manuscript published: November 19, 2014 (version 1)
  4. Version of Record published: December 30, 2014 (version 2)

Copyright

© 2014, Fu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,300
    Page views
  • 689
    Downloads
  • 65
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenxian Fu
  2. Julia Farache
  3. Susan M Clardy
  4. Kimie Hattori
  5. Palwinder Mander
  6. Kevin Lee
  7. Inmaculada Rioja
  8. Ralph Weissleder
  9. Rab K Prinjha
  10. Christophe Benoist
  11. Diane Mathis
(2014)
Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells
eLife 3:e04631.
https://doi.org/10.7554/eLife.04631

Share this article

https://doi.org/10.7554/eLife.04631

Further reading

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.