Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus

  1. Akira Takano
  2. Takuya Kajita
  3. Makoto Mochizuki
  4. Toshiya Endo
  5. Tohru Yoshihisa  Is a corresponding author
  1. Nagoya University, Japan
  2. University of Hyogo, Japan

Abstract

tRNAs are unique among various RNAs in that they shuttle between the nucleus and the cytoplasm, and their localization is regulated by nutrient conditions. Although nuclear export of tRNAs has been well documented, the import machinery is poorly understood. Here, we identified Ssa2p, a major cytoplasmic Hsp70 in Saccharomyces cerevisiae, as a tRNA-binding protein whose deletion compromises nuclear accumulation of tRNAs upon nutrient starvation. Ssa2p recognizes several structural features of tRNAs through its nucleotide-binding domain, but prefers loosely-folded tRNAs, suggesting that Ssa2p has a chaperone-like activity for RNAs. Ssa2p also binds Nup116, one of the yeast nucleoporins. Sis1p and Ydj1p, cytoplasmic co-chaperones for Ssa proteins, were also found to contribute to the tRNA import. These results unveil a novel function of the Ssa2p system as a tRNA carrier for nuclear import by a novel mode of substrate recognition. Such Ssa2p-mediated tRNA import likely contributes to quality control of cytosolic tRNAs.

Article and author information

Author details

  1. Akira Takano

    Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Takuya Kajita

    Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Makoto Mochizuki

    Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Toshiya Endo

    Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Tohru Yoshihisa

    Graduate School of Life Science, University of Hyogo, Kobe, Japan
    For correspondence
    tyoshihi@sci.u-hyogo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Takano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,207
    views
  • 529
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akira Takano
  2. Takuya Kajita
  3. Makoto Mochizuki
  4. Toshiya Endo
  5. Tohru Yoshihisa
(2015)
Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus
eLife 4:e04659.
https://doi.org/10.7554/eLife.04659

Share this article

https://doi.org/10.7554/eLife.04659

Further reading

    1. Cell Biology
    Kaiqiang Zhao, Zhongjun Zhou
    Insight

    The accumulation of SIRT4 in the nuclei of kidney cells drives kidney fibrosis, so blocking the movement of this protein could be a potential therapeutic strategy against fibrosis.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.