Genes associated with ant social behavior show distinct transcriptional and evolutionary patterns

  1. Alexander S Mikheyev
  2. Timothy Linksvayer  Is a corresponding author
  1. Okinawa Institute of Science and Technology, Japan
  2. University of Pennsylvania, United States

Abstract

Studies of the genetic basis and evolution of complex social behavior emphasize either conserved or novel genes. To begin to reconcile these perspectives, we studied how the evolutionary conservation of genes associated with social behavior depends on regulatory context, and whether genes associated with social behavior exist in distinct regulatory and evolutionary contexts. We identified modules of co-expressed genes associated with age-based division of labor between nurses and foragers in the ant Monomorium pharaonis, and we studied the relationship between molecular evolution, connectivity, and expression. Highly connected and expressed genes were more evolutionarily conserved, as expected. However, compared to the rest of the genome, forager-upregulated genes were much more highly connected and conserved, while nurse-upregulated genes were less connected and more evolutionarily labile. Our results indicate that the genetic architecture of social behavior includes both highly connected and conserved components as well as loosely connected and evolutionarily labile components.

Article and author information

Author details

  1. Alexander S Mikheyev

    Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy Linksvayer

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    tlinks@sas.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Philipp Khaitovich, Partner Institute for Computational Biology, China

Version history

  1. Received: September 15, 2014
  2. Accepted: January 23, 2015
  3. Accepted Manuscript published: January 26, 2015 (version 1)
  4. Version of Record published: February 17, 2015 (version 2)

Copyright

© 2015, Mikheyev & Linksvayer

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,190
    views
  • 646
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander S Mikheyev
  2. Timothy Linksvayer
(2015)
Genes associated with ant social behavior show distinct transcriptional and evolutionary patterns
eLife 4:e04775.
https://doi.org/10.7554/eLife.04775

Share this article

https://doi.org/10.7554/eLife.04775

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.

    1. Evolutionary Biology
    Erica R Kwiatkowski, Patrick Emery
    Insight

    Studies of the starlet sea anemone provide important insights into the early evolution of the circadian clock in animals.