The tumor growth factor beta signaling pathway is critical for the formation of CD4 T follicular helper cells and isotype-switched antibody responses in the lung mucosa

  1. Heather D Marshall
  2. John P Ray
  3. Brian J Laidlaw
  4. Nianzhi Zhang
  5. Dipika Gawande
  6. Matthew M Staron
  7. Joe Craft
  8. Susan M Kaech  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. Howard Hughes Medical Institute, Yale University School of Medicine, United States

Abstract

T follicular helper cells (Tfh) are crucial for the initiation and maintenance of germinal center (GC) reactions and high affinity, isotype-switched antibody responses. In this study, we demonstrate that direct TGF-β signaling to CD4 T cells is important for the formation of influenza-specific Tfh cells, GC reactions and development of isotype-switched, flu-specific antibody responses. Early during infection, TGF-β signaling suppressed the expression of the high affinity IL-2 receptor α chain (CD25) on virus-specific CD4 T cells, which tempered IL-2 signaling and STAT5 and mammalian target of rapamycin (mTOR) activation in Tfh precursor CD4 T cells. Inhibition of mTOR allowed for the differentiation of Tfh cells in the absence of TGF-βR signaling, suggesting that TGF-β insulates Tfh progenitor cells from IL-2-delivered mTOR signals, thereby promoting Tfh differentiation during acute viral infection. These findings identify a new pathway critical for the generation of Tfh cells and humoral responses during respiratory viral infections.

Article and author information

Author details

  1. Heather D Marshall

    Department of Immunobiology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John P Ray

    Department of Immunobiology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brian J Laidlaw

    Department of Immunobiology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nianzhi Zhang

    Department of Immunobiology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dipika Gawande

    Department of Immunobiology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew M Staron

    Department of Immunobiology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joe Craft

    Department of Immunobiology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Susan M Kaech

    Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    For correspondence
    susan.kaech@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (2013-10806) of Yale University School of Medicine. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Yale Animal Resource Center (YARC) at Yale School of Medicine.

Copyright

© 2015, Marshall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,417
    views
  • 562
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heather D Marshall
  2. John P Ray
  3. Brian J Laidlaw
  4. Nianzhi Zhang
  5. Dipika Gawande
  6. Matthew M Staron
  7. Joe Craft
  8. Susan M Kaech
(2015)
The tumor growth factor beta signaling pathway is critical for the formation of CD4 T follicular helper cells and isotype-switched antibody responses in the lung mucosa
eLife 4:e04851.
https://doi.org/10.7554/eLife.04851

Share this article

https://doi.org/10.7554/eLife.04851

Further reading

    1. Immunology and Inflammation
    Shih-Wen Huang, Yein-Gei Lai ... Nan-Shih Liao
    Research Article

    Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.