Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval

  1. Maureen Ritchey  Is a corresponding author
  2. Maria E Montchal
  3. Andrew P Yonelinas
  4. Charan Ranganath
  1. University of California, Davis, United States

Abstract

The medial temporal lobes play an important role in episodic memory, but over time, hippocampal contributions to retrieval may be diminished. However, it is unclear whether such changes are related to the ability to retrieve contextual information, and whether they are common across all medial temporal regions. Here, we used functional neuroimaging to compare neural responses during immediate and delayed recognition. Results showed that recollection-related activity in the posterior hippocampus declined after a one-day delay. In contrast, activity was relatively stable in the anterior hippocampus and in neocortical areas. Multi-voxel pattern similarity analyses also revealed that anterior hippocampal patterns contained information about context during item recognition, and after a delay, context coding in this region was related to successful retention of context information. Together, these findings suggest that the anterior and posterior hippocampus have different contributions to memory over time and that neurobiological models of memory must account for these differences.

Article and author information

Author details

  1. Maureen Ritchey

    Center for Neuroscience, University of California, Davis, Davis, United States
    For correspondence
    meritchey@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria E Montchal

    Center for Neuroscience, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew P Yonelinas

    Department of Psychology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Charan Ranganath

    Center for Neuroscience, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The study was approved by the Institutional Review Board at the University of California, Davis (protocol #238604). Written informed consent was obtained from each participant before the experiment, including consent to publish anonymized results.

Copyright

© 2015, Ritchey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,244
    views
  • 530
    downloads
  • 116
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maureen Ritchey
  2. Maria E Montchal
  3. Andrew P Yonelinas
  4. Charan Ranganath
(2015)
Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval
eLife 4:e05025.
https://doi.org/10.7554/eLife.05025

Share this article

https://doi.org/10.7554/eLife.05025

Further reading

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.