1. Genomics and Evolutionary Biology
  2. Neuroscience
Download icon

The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing

  1. Shahar Alon
  2. Sandra C Garrett
  3. Erez Y Levanon
  4. Sara Olson
  5. Brenton R Graveley
  6. Joshua J C Rosenthal
  7. Eli Eisenberg Is a corresponding author
  1. Tel Aviv University, Israel
  2. University of Connecticut Health Center, United States
  3. Bar-Ilan University, Israel
  4. University of Puerto Rico Medical Sciences Campus, Puerto Rico
Short Report
Cited
17
Views
7,760
Comments
0
Cite as: eLife 2015;4:e05198 doi: 10.7554/eLife.05198

Abstract

RNA editing by adenosine deamination alters genetic information from the genomic blueprint. When it recodes mRNAs, it gives organisms the option to express diverse, functionally distinct, protein isoforms. All eumetazoans, from cnidarians to humans, express RNA editing enzymes. However, transcriptome-wide screens have only uncovered about 25 transcripts harboring conserved recoding RNA editing sites in mammals and several hundred recoding sites in Drosophila. These studies on few established models have led to the general assumption that recoding by RNA editing is extremely rare. Here we employ a novel bioinformatic approach with extensive validation to show that the squid Doryteuthis pealeii recodes proteins by RNA editing to an unprecedented extent. We identify 57,108 recoding sites in the nervous system, affecting the majority of the proteins studied. Recoding is tissue-dependent, and enriched in genes with neuronal and cytoskeletal functions, suggesting it plays an important role in brain physiology.

Article and author information

Author details

  1. Shahar Alon

    1. George S Wise Faculty of Life Sciences, Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Sandra C Garrett

    1. Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Erez Y Levanon

    1. Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Sara Olson

    1. Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brenton R Graveley

    1. Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Joshua J C Rosenthal

    1. Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
  7. Eli Eisenberg

    1. Sagol school of Neuroscience, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    1. elieis@post.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal experimentation was conducted in accordance to the guidelines of the Marine Biological Laboratory in Woods Hole, Massachusetts.

Reviewing Editor

  1. Roderic Guigó, Reviewing Editor, Center for Genomic Regulation, Spain

Publication history

  1. Received: October 15, 2014
  2. Accepted: January 8, 2015
  3. Accepted Manuscript published: January 8, 2015 (version 1)
  4. Version of Record published: February 4, 2015 (version 2)

Copyright

© 2015, Alon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,760
    Page views
  • 838
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, PubMed Central, Crossref.

Comments

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology and Stem Cells
    Cyrille Ramond et al.
    Research Article