The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing

  1. Shahar Alon
  2. Sandra C Garrett
  3. Erez Y Levanon
  4. Sara Olson
  5. Brenton R Graveley
  6. Joshua J C Rosenthal
  7. Eli Eisenberg  Is a corresponding author
  1. Tel Aviv University, Israel
  2. University of Connecticut Health Center, United States
  3. Bar-Ilan University, Israel
  4. University of Puerto Rico Medical Sciences Campus, Puerto Rico

Abstract

RNA editing by adenosine deamination alters genetic information from the genomic blueprint. When it recodes mRNAs, it gives organisms the option to express diverse, functionally distinct, protein isoforms. All eumetazoans, from cnidarians to humans, express RNA editing enzymes. However, transcriptome-wide screens have only uncovered about 25 transcripts harboring conserved recoding RNA editing sites in mammals and several hundred recoding sites in Drosophila. These studies on few established models have led to the general assumption that recoding by RNA editing is extremely rare. Here we employ a novel bioinformatic approach with extensive validation to show that the squid Doryteuthis pealeii recodes proteins by RNA editing to an unprecedented extent. We identify 57,108 recoding sites in the nervous system, affecting the majority of the proteins studied. Recoding is tissue-dependent, and enriched in genes with neuronal and cytoskeletal functions, suggesting it plays an important role in brain physiology.

Article and author information

Author details

  1. Shahar Alon

    George S Wise Faculty of Life Sciences, Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Sandra C Garrett

    Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Erez Y Levanon

    Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Sara Olson

    Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brenton R Graveley

    Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Joshua J C Rosenthal

    Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
  7. Eli Eisenberg

    Sagol school of Neuroscience, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    elieis@post.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal experimentation was conducted in accordance to the guidelines of the Marine Biological Laboratory in Woods Hole, Massachusetts.

Copyright

© 2015, Alon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,056
    views
  • 1,411
    downloads
  • 127
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shahar Alon
  2. Sandra C Garrett
  3. Erez Y Levanon
  4. Sara Olson
  5. Brenton R Graveley
  6. Joshua J C Rosenthal
  7. Eli Eisenberg
(2015)
The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing
eLife 4:e05198.
https://doi.org/10.7554/eLife.05198

Share this article

https://doi.org/10.7554/eLife.05198

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Joakim W Karlsson, Vasu R Sah ... Jonas A Nilsson
    Research Article

    Uveal melanoma (UM) is a rare melanoma originating in the eye’s uvea, with 50% of patients experiencing metastasis predominantly in the liver. In contrast to cutaneous melanoma, there is only a limited effectiveness of combined immune checkpoint therapies, and half of patients with uveal melanoma metastases succumb to disease within 2 years. This study aimed to provide a path toward enhancing immunotherapy efficacy by identifying and functionally validating tumor-reactive T cells in liver metastases of patients with UM. We employed single-cell RNA-seq of biopsies and tumor-infiltrating lymphocytes (TILs) to identify potential tumor-reactive T cells. Patient-derived xenograft (PDX) models of UM metastases were created from patients, and tumor sphere cultures were generated from these models for co-culture with autologous or MART1-specific HLA-matched allogenic TILs. Activated T cells were subjected to TCR-seq, and the TCRs were matched to those found in single-cell sequencing data from biopsies, expanded TILs, and in livers or spleens of PDX models injected with TILs. Our findings revealed that tumor-reactive T cells resided not only among activated and exhausted subsets of T cells, but also in a subset of cytotoxic effector cells. In conclusion, combining single-cell sequencing and functional analysis provides valuable insights into which T cells in UM may be useful for cell therapy amplification and marker selection.

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Rashmi Sukumaran, Achuthsankar S Nair, Moinak Banerjee
    Research Article

    Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.