Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses

  1. Ci-Xiu Li
  2. Mang Shi
  3. Jun-Hua Tian
  4. Xian-Dan Lin
  5. Yan-Jun Kang
  6. Liang-Jun Chen
  7. Xin-Cheng Qin
  8. Jianguo Xu
  9. Edward C Holmes
  10. Yong-Zhen Zhang  Is a corresponding author
  1. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
  2. Wuhan Center for Disease Control and Prevention, China
  3. Wenzhou Center for Disease Control and Prevention, China

Abstract

Although arthropods are important viral vectors, the biodiversity of arthropod viruses, as well as the role that arthropods have played in viral origins and evolution, is unclear. Through RNA sequencing of 70 arthropod species we discovered 112 novel viruses that appear to be ancestral to much of the documented genetic diversity of negative-sense RNA viruses, a number of which are also present as endogenous genomic copies. With this greatly enriched diversity we revealed that arthropods contain viruses that fall basal to major virus groups, including the vertebrate-specific arenaviruses, filoviruses, hantaviruses, influenza viruses, lyssaviruses, and paramyxoviruses. We similarly documented a remarkable diversity of genome structures in arthropod viruses, including a putative circular form, that sheds new light on the evolution of genome organization. Hence, arthropods are a major reservoir of viral genetic diversity and have likely been central to viral evolution.

Article and author information

Author details

  1. Ci-Xiu Li

    State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Mang Shi

    State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jun-Hua Tian

    Wuhan Center for Disease Control and Prevention, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xian-Dan Lin

    Wenzhou Center for Disease Control and Prevention, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yan-Jun Kang

    State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Liang-Jun Chen

    State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xin-Cheng Qin

    State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jianguo Xu

    State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Edward C Holmes

    State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yong-Zhen Zhang

    State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
    For correspondence
    zhangyongzhen@icdc.cn
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,055
    views
  • 2,675
    downloads
  • 633
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ci-Xiu Li
  2. Mang Shi
  3. Jun-Hua Tian
  4. Xian-Dan Lin
  5. Yan-Jun Kang
  6. Liang-Jun Chen
  7. Xin-Cheng Qin
  8. Jianguo Xu
  9. Edward C Holmes
  10. Yong-Zhen Zhang
(2015)
Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses
eLife 4:e05378.
https://doi.org/10.7554/eLife.05378

Share this article

https://doi.org/10.7554/eLife.05378

Further reading

    1. Microbiology and Infectious Disease
    Sromona D Mukherjee, Carlos Batagello ... Aaron W Miller
    Research Article

    Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, rodent, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, the administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.