Identification of PLXDC1 and PLXDC2 as the transmembrane receptors for the multifunctional factor PEDF

  1. Guo Cheng
  2. Ming Zhong
  3. Riki Kawaguchi
  4. Miki Kassai
  5. Muayyad Al-Ubaidi
  6. Jun Deng
  7. Mariam Ter-Stepanian
  8. Hui Sun  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Los Angeles, United States
  2. University of Oklahoma Health Sciences Center, United States

Abstract

Pigment Epithelium Derived Factor (PEDF) is a secreted factor that has broad biological activities. It was first identified as a neurotrophic factor and later as the most potent natural antiangiogenic factor, a stem cell niche factor, and an inhibitor of cancer cell growth. Numerous animal models demonstrated its therapeutic value in treating blinding diseases and diverse cancer types. A long-standing challenge is to reveal how PEDF acts on its target cells and the identities of the cell-surface receptors responsible for its activities. Here we report the identification of transmembrane proteins PLXDC1 and PLXDC2 as cell-surface receptors for PEDF. Using distinct cellular models, we demonstrate their cell type-specific receptor activities through loss of function and gain of function studies. Our experiments suggest that PEDF receptors form homooligomers under basal conditions, and PEDF dissociates the homooligomer to activate the receptors. Mutations in the intracellular domain can have profound effects on receptor activities.

Article and author information

Author details

  1. Guo Cheng

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ming Zhong

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Riki Kawaguchi

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Miki Kassai

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Muayyad Al-Ubaidi

    Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun Deng

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mariam Ter-Stepanian

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hui Sun

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    hsun@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael S Brown, The University of Texas Southwestern Medical Center, United States

Version history

  1. Received: October 30, 2014
  2. Accepted: December 20, 2014
  3. Accepted Manuscript published: December 23, 2014 (version 1)
  4. Version of Record published: January 23, 2015 (version 2)

Copyright

© 2014, Cheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,805
    views
  • 561
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guo Cheng
  2. Ming Zhong
  3. Riki Kawaguchi
  4. Miki Kassai
  5. Muayyad Al-Ubaidi
  6. Jun Deng
  7. Mariam Ter-Stepanian
  8. Hui Sun
(2014)
Identification of PLXDC1 and PLXDC2 as the transmembrane receptors for the multifunctional factor PEDF
eLife 3:e05401.
https://doi.org/10.7554/eLife.05401

Share this article

https://doi.org/10.7554/eLife.05401

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.