A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity

  1. Yuwei Yao
  2. Xiaotian Cui
  3. Ismael Al-Ramahi
  4. Xiaoli Sun
  5. Bo Li
  6. Jiapeng Hou
  7. Marian Difiglia
  8. James Palacino
  9. Zhi-Ying Wu
  10. Lixiang Ma
  11. Juan Botas
  12. Boxun Lu  Is a corresponding author
  1. Fudan University, China
  2. Baylor College of Medicine, United States
  3. Massachusetts General Hospital, United States
  4. Novartis Institutes for Biomedical Research, United States
  5. Zhejiang University, China

Abstract

Huntington's disease (HD) represents an important model for neurodegenerative disorders and proteinopathies. It is mainly caused by cytotoxicity of the mutant huntingtin protein (Htt) with an expanded polyQ stretch. While Htt is ubiquitously expressed, HD is characterized by selective neurodegeneration of the striatum. Here we report a striatal-enriched orphan G protein-coupled receptor(GPCR) Gpr52 as a stabilizer of Htt in vitro and in vivo. Gpr52 modulates Htt via cAMP-dependent but PKA independent mechanisms. Gpr52 is located within an intron of Rabgap1l, which exhibits epistatic effects on Gpr52-mediated modulation of Htt levels by inhibiting its substrate Rab39B, which co-localizes with Htt and translocates Htt to the endoplasmic reticulum. Finally, reducing Gpr52 suppresses HD phenotypes in both patient iPS-derived neurons and in vivo Drosophila HD models. Thus, our discovery reveals modulation of Htt levels by a striatal-enriched GPCR via its GPCR function, providing insights into the selective neurodegeneration and potential treatment strategies.

Article and author information

Author details

  1. Yuwei Yao

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaotian Cui

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ismael Al-Ramahi

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaoli Sun

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Bo Li

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiapeng Hou

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Marian Difiglia

    MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. James Palacino

    Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhi-Ying Wu

    Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Lixiang Ma

    Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Juan Botas

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Boxun Lu

    State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
    For correspondence
    luboxun@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Ethics

Animal experimentation: The mouse experiments were carried out following the general guidelines published by the Association for Assessment and Accreditation of Laboratory Animal Care. The Animal Care and Use Committee of the School of Medicine at Fudan University approved the protocol used in animal experiments (Approval #20140904).

Human subjects: The study involves obtaining dermal fibroblasts from human patients. The study was approved by the ethic community of IBS at Fudan University (No.28), strictly following their general guidelines for experiments involving human subjects. Verbal and written informed consent, and the consent to publish, were obtained from all patients.

Version history

  1. Received: November 7, 2014
  2. Accepted: March 2, 2015
  3. Accepted Manuscript published: March 4, 2015 (version 1)
  4. Version of Record published: March 25, 2015 (version 2)

Copyright

© 2015, Yao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,001
    views
  • 1,074
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuwei Yao
  2. Xiaotian Cui
  3. Ismael Al-Ramahi
  4. Xiaoli Sun
  5. Bo Li
  6. Jiapeng Hou
  7. Marian Difiglia
  8. James Palacino
  9. Zhi-Ying Wu
  10. Lixiang Ma
  11. Juan Botas
  12. Boxun Lu
(2015)
A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity
eLife 4:e05449.
https://doi.org/10.7554/eLife.05449

Share this article

https://doi.org/10.7554/eLife.05449

Further reading

    1. Neuroscience
    David J Herzfeld
    Insight

    Abnormal activity in the cerebellar nuclei can be used to predict motor symptoms and induce them experimentally, pointing to potential therapeutic strategies.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.