Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

  1. Sebastiaan Schotten
  2. Marieke Meijer
  3. Alexander Matthias Walter
  4. Vincent Huson
  5. Lauren Mamer
  6. Lawrence Kalogreades
  7. Mirelle ter Veer
  8. Marvin Ruiter
  9. Nils Brose
  10. Christian Rosenmund
  11. Jakob B. Sørensen
  12. Matthijs Verhage
  13. Lennart Niels Cornelisse  Is a corresponding author
  1. VU University Medical Center, Netherlands
  2. Charité, Universitätsmedizin Berlin, Germany
  3. Max Planck Institute for Experimental Medicine, Germany
  4. University of Copenhagen, Denmark

Abstract

The energy required to fuse synaptic vesicles with the plasma membrane ('activation energy') is considered a major determinant in synaptic efficacy. From reaction rate theory we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that ComplexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive versus multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release.

Article and author information

Author details

  1. Sebastiaan Schotten

    Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  2. Marieke Meijer

    Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  3. Alexander Matthias Walter

    Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  4. Vincent Huson

    Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  5. Lauren Mamer

    NeuroCure Cluster of Excellence, Charité, Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Lawrence Kalogreades

    Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  7. Mirelle ter Veer

    Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  8. Marvin Ruiter

    Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  9. Nils Brose

    Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    No competing interests declared.
  10. Christian Rosenmund

    NeuroCure Cluster of Excellence, Neuroscience Research Center, Charité, Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    Christian Rosenmund, Reviewing editor, eLife.
  11. Jakob B. Sørensen

    Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  12. Matthijs Verhage

    Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  13. Lennart Niels Cornelisse

    Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
    For correspondence
    l.n.cornelisse@vu.nl
    Competing interests
    No competing interests declared.

Copyright

© 2015, Schotten et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,992
    views
  • 589
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastiaan Schotten
  2. Marieke Meijer
  3. Alexander Matthias Walter
  4. Vincent Huson
  5. Lauren Mamer
  6. Lawrence Kalogreades
  7. Mirelle ter Veer
  8. Marvin Ruiter
  9. Nils Brose
  10. Christian Rosenmund
  11. Jakob B. Sørensen
  12. Matthijs Verhage
  13. Lennart Niels Cornelisse
(2015)
Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate
eLife 4:e05531.
https://doi.org/10.7554/eLife.05531

Share this article

https://doi.org/10.7554/eLife.05531

Further reading

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.