Angiopoietin-like proteins stimulate HSPC development through interaction with Notch receptor signaling.

  1. Michelle I Lin
  2. Emily N Price
  3. Sonja Boatman
  4. Elliott J Hagedorn
  5. Eirini Trompouki
  6. Sruthi Satishchandran
  7. Charles W Carspecken
  8. Audrey Uong
  9. Anthony DiBiase
  10. Song Yang
  11. Matthew C Canver
  12. Ann Dahlberg
  13. Zhigang Lu
  14. Cheng Cheng Zhang
  15. Stuart H Orkin
  16. Irwin D Bernstein
  17. Jon C Aster
  18. Richard M White
  19. Leonard I Zon  Is a corresponding author
  1. Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, United States
  2. Fred Hutchinson Cancer Research Center, United States
  3. University of Texas Southwestern Medical Center, United States
  4. Brigham and Women's Hospital, United States
  5. Memorial Sloan Kettering Cancer Center, United States

Abstract

Angiopoietin-like proteins (angptls) are capable of ex vivo expansion of mouse and human hematopoietic stem and progenitor cells (HSPCs). Despite this intriguing ability, their mechanism is unknown. Here, we show that angptl2 overexpression is sufficient to expand definitive HSPCs in zebrafish embryos. Angptl1/2 are required for definitive hematopoiesis and vascular specification of the hemogenic endothelium. The loss-of-function phenotype is reminiscent of the notch mutant mindbomb (mib) and a strong genetic interaction occurs between angptls and notch. Overexpressing angptl2 rescues mib while overexpressing notch rescues angptl1/2 morphants. Gene expression studies in Angptl2-stimulated CD34+ cells showed a strong Myc activation signature and myc overexpression in angptl1/2 morphants or mib restored HSPCs formation. Angptl2 can increase Notch activation in cultured cells and Angptl receptor interacted with Notch to regulate Notch cleavage. Together our data provide insight to the angptl-mediated notch activation through receptor interaction and subsequent activation of myc targets.

Article and author information

Author details

  1. Michelle I Lin

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Emily N Price

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Sonja Boatman

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Elliott J Hagedorn

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Eirini Trompouki

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  6. Sruthi Satishchandran

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  7. Charles W Carspecken

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Audrey Uong

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. Anthony DiBiase

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  10. Song Yang

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  11. Matthew C Canver

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  12. Ann Dahlberg

    Pediatric Oncology, Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  13. Zhigang Lu

    Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  14. Cheng Cheng Zhang

    Department of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  15. Stuart H Orkin

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  16. Irwin D Bernstein

    Pediatric Oncology, Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  17. Jon C Aster

    Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  18. Richard M White

    Department of Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  19. Leonard I Zon

    Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    For correspondence
    zon@enders.tch.harvard.edu
    Competing interests
    Leonard I Zon, I am a founder and stockholder of Fate, Inc. and Scholar Rock, and a scientific advisor for Stemgent.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All zebrafish were housed at the Karp Aquatic Resource Program Facility at Boston Children's Hospital. All protocols were approved by the Animal Care and Use Committee at Boston Children's Hospital and by the Institutional Animal Care and Use Committee (protocol 11-10-2069R).

Copyright

© 2015, Lin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,876
    views
  • 747
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle I Lin
  2. Emily N Price
  3. Sonja Boatman
  4. Elliott J Hagedorn
  5. Eirini Trompouki
  6. Sruthi Satishchandran
  7. Charles W Carspecken
  8. Audrey Uong
  9. Anthony DiBiase
  10. Song Yang
  11. Matthew C Canver
  12. Ann Dahlberg
  13. Zhigang Lu
  14. Cheng Cheng Zhang
  15. Stuart H Orkin
  16. Irwin D Bernstein
  17. Jon C Aster
  18. Richard M White
  19. Leonard I Zon
(2015)
Angiopoietin-like proteins stimulate HSPC development through interaction with Notch receptor signaling.
eLife 4:e05544.
https://doi.org/10.7554/eLife.05544

Share this article

https://doi.org/10.7554/eLife.05544

Further reading

    1. Developmental Biology
    Jing Lu, Hao Xu ... Kai Lei
    Tools and Resources

    The intricate coordination of the neural network in planarian growth and regeneration has remained largely unrevealed, partly due to the challenges of imaging the CNS in three dimensions (3D) with high resolution and within a reasonable timeframe. To address this gap in systematic imaging of the CNS in planarians, we adopted high-resolution, nanoscale imaging by combining tissue expansion and tiling light-sheet microscopy, achieving up to fourfold linear expansion. Using an automatic 3D cell segmentation pipeline, we quantitatively profiled neurons and muscle fibers at the single-cell level in over 400 wild-type planarians during homeostasis and regeneration. We validated previous observations of neuronal cell number changes and muscle fiber distribution. We found that the increase in neuron cell number tends to lag behind the rapid expansion of somatic cells during the later phase of homeostasis. By imaging the planarian with up to 120 nm resolution, we also observed distinct muscle distribution patterns at the anterior and posterior poles. Furthermore, we investigated the effects of β-catenin-1 RNAi on muscle fiber distribution at the posterior pole, consistent with changes in anterior-posterior polarity. The glial cells were observed to be close in contact with dorsal-ventral muscle fibers. Finally, we observed disruptions in neural-muscular networks in inr-1 RNAi planarians. These findings provide insights into the detailed structure and potential functions of the neural-muscular system in planarians and highlight the accessibility of our imaging tool in unraveling the biological functions underlying their diverse phenotypes and behaviors.

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.