The GTPase Rab26 links synaptic vesicles to the autophagy pathway

  1. Beyenech Binotti
  2. Nathan J Pavlos
  3. Dietmar Riedel
  4. Dirk Wenzel
  5. Gerd Vorbrüggen
  6. Amanda M Schalk
  7. Karin Kühnel
  8. Janina Boyken
  9. Christian Erck
  10. Henrik Martens
  11. John J E Chua
  12. Reinhard Jahn  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. University of Western Australia, Australia
  3. University of Illinois at Chicago, United States
  4. Bayer Pharma Aktiengesellschaft, Germany
  5. Synaptic Systems GmbH, Germany

Abstract

Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles. Both endogenous and induced clusters co-localize with autophagy-related proteins such as Atg16L1, LC3B and Rab33B but not with other organelles. Furthermore, Atg16L1 appears to be a direct effector of Rab26 and binds Rab26 in its GTP-bound form, albeit only with low affinity. We propose that Rab26 selectively directs synaptic and secretory vesicles into preautophagosomal structures, suggesting the presence of a novel pathway for degradation of synaptic vesicles.

Article and author information

Author details

  1. Beyenech Binotti

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
  2. Nathan J Pavlos

    School Of Surgery, University of Western Australia, Crawley, Australia
    Competing interests
    No competing interests declared.
  3. Dietmar Riedel

    Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
  4. Dirk Wenzel

    Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
  5. Gerd Vorbrüggen

    Research Group Molecular Cell Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
  6. Amanda M Schalk

    Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Ashland, United States
    Competing interests
    No competing interests declared.
  7. Karin Kühnel

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
  8. Janina Boyken

    Gynecological Therapies, Bayer Pharma Aktiengesellschaft, Berlin, Germany
    Competing interests
    No competing interests declared.
  9. Christian Erck

    Synaptic Systems GmbH, Göttingen, Germany
    Competing interests
    No competing interests declared.
  10. Henrik Martens

    Synaptic Systems GmbH, Göttingen, Germany
    Competing interests
    No competing interests declared.
  11. John J E Chua

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
  12. Reinhard Jahn

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    rjahn@gwdg.de
    Competing interests
    Reinhard Jahn, Reviewing editor, eLife.

Copyright

© 2015, Binotti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,646
    views
  • 952
    downloads
  • 137
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Beyenech Binotti
  2. Nathan J Pavlos
  3. Dietmar Riedel
  4. Dirk Wenzel
  5. Gerd Vorbrüggen
  6. Amanda M Schalk
  7. Karin Kühnel
  8. Janina Boyken
  9. Christian Erck
  10. Henrik Martens
  11. John J E Chua
  12. Reinhard Jahn
(2015)
The GTPase Rab26 links synaptic vesicles to the autophagy pathway
eLife 4:e05597.
https://doi.org/10.7554/eLife.05597

Share this article

https://doi.org/10.7554/eLife.05597

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.