1. Chromosomes and Gene Expression
  2. Genetics and Genomics
Download icon

The genetic architecture of NAFLD among inbred strains of mice

  1. Simon T Hui  Is a corresponding author
  2. Brian W Parks
  3. Elin Org
  4. Frode Norheim
  5. Nam Che
  6. Calvin Pan
  7. Lawrence W Castellani
  8. Sarada Charugundla
  9. Darwin L Dirks
  10. Nikolaos Psychogios
  11. Isaac Neuhaus
  12. Robert E Gerszten
  13. Todd Kirchgessner
  14. Peter S Gargalovic
  15. Aldons J Lusis
  1. University of California, Los Angeles, United States
  2. University of Oslo, Norway
  3. Harvard Medical School, United States
  4. Bristol-Myers Squibb, United States
Research Article
  • Cited 48
  • Views 2,882
  • Annotations
Cite this article as: eLife 2015;4:e05607 doi: 10.7554/eLife.05607

Abstract

To identify genetic and environmental factors contributing to the pathogenesis of non-alcoholic fatty liver disease, we examined liver steatosis and related clinical and molecular traits in more than 100 unique inbred mouse strains which were fed a diet rich in fat and carbohydrates. A >30-fold variation in hepatic TG accumulation was observed among the strains. Genome wide association studies revealed three loci associated with hepatic TG accumulation. Utilizing transcriptomic data from the liver and adipose tissue, we identified several high-confidence candidate genes for hepatic steatosis, including Gde1, a glycerophosphodiester phosphodiesterase not previously implicated in triglyceride metabolism. We confirmed the role of Gde1 by in vivo hepatic over-expression and shRNA knockdown studies. We hypothesize that Gde1 expression increases TG production by contributing to the production of glycerol-3-phosphate. Our multi-level data, including transcript levels, metabolite levels, and gut microbiota composition, provide a framework for understanding genetic and environmental interactions underlying hepatic steatosis.

Article and author information

Author details

  1. Simon T Hui

    Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    sthui@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Brian W Parks

    Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elin Org

    Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Frode Norheim

    Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Nam Che

    Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Calvin Pan

    Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lawrence W Castellani

    Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarada Charugundla

    Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Darwin L Dirks

    Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nikolaos Psychogios

    Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Isaac Neuhaus

    Department of Computational Genomics, Bristol-Myers Squibb, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Robert E Gerszten

    Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Todd Kirchgessner

    Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Peter S Gargalovic

    Department of Computational Genomics, Bristol-Myers Squibb, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Aldons J Lusis

    Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#92-169) of the University of California at Los Angeles.

Reviewing Editor

  1. Christopher Glass, University of California, San Diego, United States

Publication history

  1. Received: November 13, 2014
  2. Accepted: June 11, 2015
  3. Accepted Manuscript published: June 12, 2015 (version 1)
  4. Version of Record published: July 7, 2015 (version 2)

Copyright

© 2015, Hui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,882
    Page views
  • 647
    Downloads
  • 48
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Io Yamamoto et al.
    Research Article

    Telomeres are nucleoprotein complexes at the ends of chromosomes and are indispensable for the protection and lengthening of terminal DNA. Despite the evolutionarily conserved roles of telomeres, the telomeric double-strand DNA (dsDNA)-binding proteins have evolved rapidly. Here, we identified double-strand telomeric DNA-binding proteins (DTN-1 and DTN-2) in Caenorhabditis elegans as non-canonical telomeric dsDNA-binding proteins. DTN-1 and DTN-2 are paralogous proteins that have three putative MYB-like DNA-binding domains and bind to telomeric dsDNA in a sequence-specific manner. DTN-1 and DTN-2 form complexes with the single-strand telomeric DNA-binding proteins POT-1 and POT-2 and constitutively localize to telomeres. The dtn-1 and dtn-2 genes function redundantly, and their simultaneous deletion results in progressive germline mortality, which accompanies telomere hyper-elongation and chromosomal bridges. Our study suggests that DTN-1 and DTN-2 are core shelterin components in C. elegans telomeres that act as negative regulators of telomere length and are essential for germline immortality.

    1. Chromosomes and Gene Expression
    Mark C Johnson et al.
    Research Article Updated

    Checkpoints maintain the order of cell cycle events during DNA damage or incomplete replication. How the checkpoint response is tailored to different phases of the cell cycle remains poorly understood. The S-phase checkpoint for example results in the slowing of replication, which in budding yeast occurs by Rad53-dependent inhibition of the initiation factors Sld3 and Dbf4. Despite this, we show here that Rad53 phosphorylates both of these substrates throughout the cell cycle at the same sites as in S-phase, suggesting roles for this pathway beyond S-phase. Indeed, we show that Rad53-dependent inhibition of Sld3 and Dbf4 limits re-replication in G2/M, preventing gene amplification. In addition, we show that inhibition of Sld3 and Dbf4 in G1 prevents premature initiation at all origins at the G1/S transition. This study redefines the scope of the ‘S-phase checkpoint’ with implications for understanding checkpoint function in cancers that lack cell cycle controls.