Stimulus-selective crosstalk via the NF-κB signaling system reinforces innate immune response to alleviate gut infection

Abstract

Tissue microenvironment functions as an important determinant of the inflammatory response elicited by the resident cells. Yet, the underlying molecular mechanisms remain obscure. Our systems-level analyses identified a duration code that instructs stimulus specific crosstalk between TLR4 activated canonical NF-κB pathway and lymphotoxin-β receptor (LTβR) induced non-canonical NF-κB signaling. Indeed, LTβR costimulation synergistically enhanced the late RelA/NF-κB response to TLR4 prolonging NF-κB target gene-expressions. Concomitant LTβR signal targeted TLR4-induced newly synthesized p100, encoded by Nfkb2, for processing into p52 that not only neutralized p100 mediated inhibitions, but potently generated RelA:p52/NF-κB activity in a positive feedback loop. Finally, Nfkb2 connected lymphotoxin signal within the intestinal niche in reinforcing epithelial innate inflammatory RelA/NF-κB response to Citrobacter rodentium infection, while Nfkb2-/- mice succumbed to gut infections owing to stromal defects. In sum, our results suggest that signal integration via the pleiotropic NF-κB system enables tissue microenvironment derived cues in calibrating physiological responses.

Article and author information

Author details

  1. Balaji Banoth

    Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Budhaditya Chatterjee

    Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Bharath Vijayaragavan

    Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  4. M V R Prasad

    Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Payel Roy

    Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Soumen Basak

    Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
    For correspondence
    sobasak@nii.ac.in
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Arup K Chakraborty, Massachusetts Institute of Technology, United States

Ethics

Animal experimentation: Wild-type or gene-deficient C57BL/6 mice were housed at NII small animal facility and used strictly in accordance with the Institutional Animal Ethics Committee guidelines of the institute. The protocol was approved by the committee with the approved protocol no: IAEC#258/11 (for embryonic fibroblast cell collection) and IAEC#313/13 (for infection related studies).

Version history

  1. Received: November 19, 2014
  2. Accepted: April 22, 2015
  3. Accepted Manuscript published: April 23, 2015 (version 1)
  4. Version of Record published: May 15, 2015 (version 2)

Copyright

© 2015, Banoth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,990
    views
  • 686
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Balaji Banoth
  2. Budhaditya Chatterjee
  3. Bharath Vijayaragavan
  4. M V R Prasad
  5. Payel Roy
  6. Soumen Basak
(2015)
Stimulus-selective crosstalk via the NF-κB signaling system reinforces innate immune response to alleviate gut infection
eLife 4:e05648.
https://doi.org/10.7554/eLife.05648

Share this article

https://doi.org/10.7554/eLife.05648

Further reading

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.