Distinct cortical codes and temporal dynamics for conscious and unconscious percepts

  1. Moti Salti  Is a corresponding author
  2. Simo Monto
  3. Lucie Charles
  4. Jean-Remi King
  5. Lauri Parkkonen
  6. Stanislas Dehaene
  1. Institut national de la santé et de la recherche médicale, France

Abstract

The neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight). EEG and MEG were recorded while participants reported the spatial location and visibility of a briefly presented target. Multivariate pattern analysis demonstrated that considerable information about spatial location traverses the cortex on blindsight trials, but that starting ≈270ms post-onset, information unique to consciously perceived stimuli emerges in superior-parietal and superior-frontal regions. Conscious access appears characterized by the entry of the perceived stimulus into a series of additional brain processes, each restricted in time, while the failure of conscious access results in the breaking of this chain and a subsequent slow decay of the lingering unconscious activity.

Article and author information

Author details

  1. Moti Salti

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    For correspondence
    motisalti@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Simo Monto

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucie Charles

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Remi King

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Lauri Parkkonen

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Stanislas Dehaene

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The study was approved by the by CPP IDF under the reference CPP 08 021. All subjects gave written informed consent and consent to publish before participating in the study.

Copyright

© 2015, Salti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,607
    views
  • 1,020
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moti Salti
  2. Simo Monto
  3. Lucie Charles
  4. Jean-Remi King
  5. Lauri Parkkonen
  6. Stanislas Dehaene
(2015)
Distinct cortical codes and temporal dynamics for conscious and unconscious percepts
eLife 4:e05652.
https://doi.org/10.7554/eLife.05652

Share this article

https://doi.org/10.7554/eLife.05652

Further reading

    1. Neuroscience
    Célian Bimbard, Flóra Takács ... Philip Coen
    Tools and Resources

    Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the ‘Apollo Implant’, an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a ‘payload’ module which is attached to the probe and is recoverable, and a ‘docking’ module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.

    1. Neuroscience
    Ana Fló, Lucas Benjamin ... Ghislaine Dehaene-Lambertz
    Research Article

    Interest in statistical learning in developmental studies stems from the observation that 8-month-olds were able to extract words from a monotone speech stream solely using the transition probabilities (TP) between syllables (Saffran et al., 1996). A simple mechanism was thus part of the human infant’s toolbox for discovering regularities in language. Since this seminal study, observations on statistical learning capabilities have multiplied across domains and species, challenging the hypothesis of a dedicated mechanism for language acquisition. Here, we leverage the two dimensions conveyed by speech –speaker identity and phonemes– to examine (1) whether neonates can compute TPs on one dimension despite irrelevant variation on the other and (2) whether the linguistic dimension enjoys an advantage over the voice dimension. In two experiments, we exposed neonates to artificial speech streams constructed by concatenating syllables while recording EEG. The sequence had a statistical structure based either on the phonetic content, while the voices varied randomly (Experiment 1) or on voices with random phonetic content (Experiment 2). After familiarisation, neonates heard isolated duplets adhering, or not, to the structure they were familiarised with. In both experiments, we observed neural entrainment at the frequency of the regularity and distinct Event-Related Potentials (ERP) to correct and incorrect duplets, highlighting the universality of statistical learning mechanisms and suggesting it operates on virtually any dimension the input is factorised. However, only linguistic duplets elicited a specific ERP component, potentially an N400 precursor, suggesting a lexical stage triggered by phonetic regularities already at birth. These results show that, from birth, multiple input regularities can be processed in parallel and feed different higher-order networks.