Distinct cortical codes and temporal dynamics for conscious and unconscious percepts

  1. Moti Salti  Is a corresponding author
  2. Simo Monto
  3. Lucie Charles
  4. Jean-Remi King
  5. Lauri Parkkonen
  6. Stanislas Dehaene
  1. Institut national de la santé et de la recherche médicale, France

Abstract

The neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight). EEG and MEG were recorded while participants reported the spatial location and visibility of a briefly presented target. Multivariate pattern analysis demonstrated that considerable information about spatial location traverses the cortex on blindsight trials, but that starting ≈270ms post-onset, information unique to consciously perceived stimuli emerges in superior-parietal and superior-frontal regions. Conscious access appears characterized by the entry of the perceived stimulus into a series of additional brain processes, each restricted in time, while the failure of conscious access results in the breaking of this chain and a subsequent slow decay of the lingering unconscious activity.

Article and author information

Author details

  1. Moti Salti

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    For correspondence
    motisalti@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Simo Monto

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucie Charles

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Remi King

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Lauri Parkkonen

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Stanislas Dehaene

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The study was approved by the by CPP IDF under the reference CPP 08 021. All subjects gave written informed consent and consent to publish before participating in the study.

Copyright

© 2015, Salti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,618
    views
  • 1,021
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moti Salti
  2. Simo Monto
  3. Lucie Charles
  4. Jean-Remi King
  5. Lauri Parkkonen
  6. Stanislas Dehaene
(2015)
Distinct cortical codes and temporal dynamics for conscious and unconscious percepts
eLife 4:e05652.
https://doi.org/10.7554/eLife.05652

Share this article

https://doi.org/10.7554/eLife.05652

Further reading

    1. Neuroscience
    Olga Kepinska, Josue Dalboni da Rocha ... Narly Golestani
    Research Article

    This study examines whether auditory cortex anatomy reflects multilingual experience, specifically individuals’ phonological repertoire. Using data from over 200 participants exposed to 1–7 languages across 36 languages, we analyzed the role of language experience and typological distances between languages they spoke in shaping neural signatures of multilingualism. Our findings reveal a negative relationship between the thickness of the left and right second transverse temporal gyrus (TTG) and participants’ degree of multilingualism. Models incorporating phoneme-level information in the language experience index explained the most variance in TTG thickness, suggesting that a more extensive and more phonologically diverse language experience is associated with thinner cortices in the second TTG. This pattern, consistent across two datasets, supports the idea of experience-driven pruning and neural efficiency. Our findings indicate that experience with typologically distant languages appear to impact the brain differently than those with similar languages. Moreover, they suggest that early auditory regions seem to represent phoneme-level cross-linguistic information, contrary to the most established models of language processing in the brain, which suggest that phonological processing happens in more lateral posterior superior temporal gyrus (STG) and superior temporal sulcus (STS).

    1. Neuroscience
    Sara A Nolin, Mary E Faulkner ... Kristina Visscher
    Research Article

    The brain is organized into systems and networks of interacting components. The functional connections among these components give insight into the brain's organization and may underlie some cognitive effects of aging. Examining the relationship between individual differences in brain organization and cognitive function in older adults who have reached oldest old ages with healthy cognition can help us understand how these networks support healthy cognitive aging. We investigated functional network segregation in 146 cognitively healthy participants aged 85+ in the McKnight Brain Aging Registry. We found that the segregation of the association system and the individual networks within the association system [the fronto-parietal network (FPN), cingulo-opercular network (CON) and default mode network (DMN)], has strong associations with overall cognition and processing speed. We also provide a healthy oldest-old (85+) cortical parcellation that can be used in future work in this age group. This study shows that network segregation of the oldest-old brain is closely linked to cognitive performance. This work adds to the growing body of knowledge about differentiation in the aged brain by demonstrating that cognitive ability is associated with differentiated functional networks in very old individuals representing successful cognitive aging.