Distinct cortical codes and temporal dynamics for conscious and unconscious percepts

  1. Moti Salti  Is a corresponding author
  2. Simo Monto
  3. Lucie Charles
  4. Jean-Remi King
  5. Lauri Parkkonen
  6. Stanislas Dehaene
  1. Institut national de la santé et de la recherche médicale, France

Abstract

The neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight). EEG and MEG were recorded while participants reported the spatial location and visibility of a briefly presented target. Multivariate pattern analysis demonstrated that considerable information about spatial location traverses the cortex on blindsight trials, but that starting ≈270ms post-onset, information unique to consciously perceived stimuli emerges in superior-parietal and superior-frontal regions. Conscious access appears characterized by the entry of the perceived stimulus into a series of additional brain processes, each restricted in time, while the failure of conscious access results in the breaking of this chain and a subsequent slow decay of the lingering unconscious activity.

Article and author information

Author details

  1. Moti Salti

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    For correspondence
    motisalti@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Simo Monto

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucie Charles

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Remi King

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Lauri Parkkonen

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Stanislas Dehaene

    Cognitive Neuroimaging Unit, Institut national de la santé et de la recherche médicale, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Heidi Johansen-Berg, University of Oxford, United Kingdom

Ethics

Human subjects: The study was approved by the by CPP IDF under the reference CPP 08 021. All subjects gave written informed consent and consent to publish before participating in the study.

Version history

  1. Received: December 8, 2014
  2. Accepted: May 20, 2015
  3. Accepted Manuscript published: May 21, 2015 (version 1)
  4. Version of Record published: June 15, 2015 (version 2)

Copyright

© 2015, Salti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,560
    views
  • 1,009
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moti Salti
  2. Simo Monto
  3. Lucie Charles
  4. Jean-Remi King
  5. Lauri Parkkonen
  6. Stanislas Dehaene
(2015)
Distinct cortical codes and temporal dynamics for conscious and unconscious percepts
eLife 4:e05652.
https://doi.org/10.7554/eLife.05652

Share this article

https://doi.org/10.7554/eLife.05652

Further reading

    1. Neuroscience
    David J Herzfeld
    Insight

    Abnormal activity in the cerebellar nuclei can be used to predict motor symptoms and induce them experimentally, pointing to potential therapeutic strategies.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.