Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA

  1. Jianguo Wu
  2. Zhirui Yang
  3. Yu Wang
  4. Lijia Zheng
  5. Ruiqiang Ye
  6. Yinghua Ji
  7. Shanshan Zhao
  8. Shaoyi Ji
  9. Ruofei Liu
  10. Le Xu
  11. Hong Zheng
  12. Yijun Zhou
  13. Xin Zhang
  14. Xiaofeng Cao
  15. Lianhui Xie
  16. Zujian Wu
  17. Yijun Qi
  18. Yi Li  Is a corresponding author
  1. Peking University, China
  2. Tsinghua University, China
  3. Jiangsu Academy of Agricultural Sciences, China
  4. Chinese Academy of Agricultural Sciences, China
  5. Institute of Genetics and Developmental Biology, China
  6. Fujian Agriculture and Forestry University, China

Abstract

Viral pathogens are a major threat to rice production worldwide. Although RNA interference (RNAi) is known to mediate antiviral immunity in plant and animal models, the mechanism of antiviral RNAi in rice and other economically important crops is poorly understood. Here, we report that rice resistance to evolutionarily diverse viruses requires Argonaute18 (AGO18). Genetic studies reveal that the antiviral function of AGO18 depends on its activity to sequester microRNA168 (miR168) to alleviate repression of rice AGO1 essential for antiviral RNAi. Expression of miR168-resistant AGO1a in ago18 background rescues or increases rice antiviral activity. Notably, stable transgenic expression of AGO18 confers broad-spectrum virus resistance in rice. Our findings uncover a novel cooperative antiviral activity of two distinct AGO proteins and suggest a new strategy for the control of viral diseases in rice.

Article and author information

Author details

  1. Jianguo Wu

    State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhirui Yang

    State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu Wang

    State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Lijia Zheng

    State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ruiqiang Ye

    Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yinghua Ji

    Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Shanshan Zhao

    State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Shaoyi Ji

    State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ruofei Liu

    State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Le Xu

    Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Hong Zheng

    State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Yijun Zhou

    Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Xin Zhang

    Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Xiaofeng Cao

    State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Lianhui Xie

    Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Zujian Wu

    Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Yijun Qi

    Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  18. Yi Li

    State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
    For correspondence
    liyi@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,993
    views
  • 1,443
    downloads
  • 207
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jianguo Wu
  2. Zhirui Yang
  3. Yu Wang
  4. Lijia Zheng
  5. Ruiqiang Ye
  6. Yinghua Ji
  7. Shanshan Zhao
  8. Shaoyi Ji
  9. Ruofei Liu
  10. Le Xu
  11. Hong Zheng
  12. Yijun Zhou
  13. Xin Zhang
  14. Xiaofeng Cao
  15. Lianhui Xie
  16. Zujian Wu
  17. Yijun Qi
  18. Yi Li
(2015)
Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA
eLife 4:e05733.
https://doi.org/10.7554/eLife.05733

Share this article

https://doi.org/10.7554/eLife.05733

Further reading

    1. Microbiology and Infectious Disease
    McKenna Harpring, Junghoon Lee ... John V Cox
    Research Article

    Chlamydia trachomatis serovar L2 (Ct), an obligate intracellular bacterium that does not encode FtsZ, divides by a polarized budding process. In the absence of FtsZ, we show that FtsK, a chromosomal translocase, is critical for divisome assembly in Ct. Chlamydial FtsK forms discrete foci at the septum and at the base of the progenitor mother cell, and our data indicate that FtsK foci at the base of the mother cell mark the location of nascent divisome complexes that form at the site where a daughter cell will emerge in the next round of division. The divisome in Ct has a hybrid composition, containing elements of the divisome and elongasome from other bacteria, and FtsK is recruited to nascent divisomes prior to the other chlamydial divisome proteins assayed, including the PBP2 and PBP3 transpeptidases, and MreB and MreC. Knocking down FtsK prevents divisome assembly in Ct and inhibits cell division and septal peptidoglycan synthesis. We further show that MreB does not function like FtsZ and serve as a scaffold for the assembly of the Ct divisome. Rather, MreB is one of the last proteins recruited to the chlamydial divisome, and it is necessary for the formation of septal peptidoglycan rings. Our studies illustrate the critical role of chlamydial FtsK in coordinating divisome assembly and peptidoglycan synthesis in this obligate intracellular bacterial pathogen.

    1. Microbiology and Infectious Disease
    Tao Tang, Weiming Zhong ... Zhipeng Gao
    Research Article

    Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.