Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements

  1. Christopher E Ellison
  2. Doris Bachtrog  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

Transposable elements (TEs) allow rewiring of regulatory networks, and the recent amplification of the ISX-element dispersed 77 functional but suboptimal binding-sites for the dosage-compensation-complex to a newly-formed X-chromosome in Drosophila. Here we identify two linked refining-mutations within ISX that interact epistatically to increase binding affinity to the dosage-compensation-complex. Selection has increased the frequency of this derived haplotype in the population, which is fixed at 30% of ISX-insertions and polymorphic among another 41%. Sharing of this haplotype indicates that high levels of gene-conversion among ISX-elements allow them to 'crowd-source' refining-mutations, and a refining-mutation that occurs at any single ISX-element can spread in two dimensions: horizontally across insertion sites by non-allelic gene-conversion, and vertically through the population by natural selection. These describes a novel route how fully functional regulatory elements can arise rapidly from TEs and implicate non-allelic gene-conversion as having an important role in accelerating the evolutionary fine-tuning of regulatory networks.

Article and author information

Author details

  1. Christopher E Ellison

    Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Doris Bachtrog

    Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    dbachtrog@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Ellison & Bachtrog

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,300
    views
  • 371
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher E Ellison
  2. Doris Bachtrog
(2015)
Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements
eLife 4:e05899.
https://doi.org/10.7554/eLife.05899

Share this article

https://doi.org/10.7554/eLife.05899

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article

    The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.

    1. Genetics and Genomics
    Sophie Debaenst, Tamara Jarayseh ... Andy Willaert
    Research Article

    Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes. Six genes linked to severe recessive osteogenesis imperfecta (OI) and four associated with bone mineral density (BMD) from genome-wide association studies were analyzed using CRISPR/Cas9-based crispant screening in F0 mosaic founder zebrafish. Next-generation sequencing confirmed high indel efficiency (mean 88%), mimicking stable knock-out models. Skeletal phenotyping at 7, 14, and 90 days post-fertilization (dpf) using microscopy, Alizarin Red S staining, and microCT was performed. Larval crispants showed variable osteoblast and mineralization phenotypes, while adult crispants displayed consistent skeletal defects, including malformed neural and haemal arches, vertebral fractures and fusions, and altered bone volume and density. In addition, aldh7a1 and mbtps2 crispants experienced increased mortality due to severe skeletal deformities. RT-qPCR revealed differential expression of osteogenic markers bglap and col1a1a, highlighting their biomarker potential. Our results establish zebrafish crispant screening as a robust tool for FBD gene validation, combining skeletal and molecular analyses across developmental stages to uncover novel insights into gene functions in bone biology.