Abstract
Rod photoreceptors generate measurable responses to single-photon activation of individual molecules of the G-protein-coupled receptor, rhodopsin. Timely rhodopsin desensitization depends on phosphorylation and arrestin binding, which quenches G-protein activation. Rhodopsin phosphorylation has been measured biochemically at C-terminal serine residues, suggesting that these residues are critical for producing fast, low noise responses. The role of native threonine residues is unclear. We compared single-photon responses from rhodopsin lacking native serine or threonine phosphorylation sites. Contrary to expectation, serine-only rhodopsin generated prolonged step-like single-photon responses that terminated abruptly and randomly, whereas threonine-only rhodopsin generated responses that were only modestly slower than normal. We show that the step-like responses of serine-only rhodopsin reflect slow and stochastic arrestin binding. Thus, threonine sites play a privileged role in promoting timely arrestin binding and rhodopsin desensitization. Similar coordination of phosphorylation and arrestin binding may more generally permit tight control of the duration of G-protein-coupled receptor activity.
Article and author information
Author details
Ethics
Animal experimentation: This work was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures followed protocols approved by the Institutional Animal Care and Use Committee (protocol 3030-01) of the University of Washington.
Reviewing Editor
- Ronald L Calabrese, Emory University, United States
Publication history
- Received: December 9, 2014
- Accepted: April 23, 2015
- Accepted Manuscript published: April 24, 2015 (version 1)
- Version of Record published: May 20, 2015 (version 2)
Copyright
© 2015, Azevedo et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,686
- Page views
-
- 462
- Downloads
-
- 27
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.