C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor

  1. Anthony W Azevedo
  2. Thuy Doan
  3. Hormoz Moaven
  4. Iza Sokal
  5. Faiza Baameur
  6. Sergey A Vishnivetskiy
  7. Kristoff T Homan
  8. John J G Tesmer
  9. Vsevolod V Gurevich
  10. Jeannie Chen
  11. Fred Rieke  Is a corresponding author
  1. University of Washington, United States
  2. Keck School of Medicine of University of Southern California, United States
  3. Vanderbilt University School of Medicine, United States
  4. University of Michigan, United States

Abstract

Rod photoreceptors generate measurable responses to single-photon activation of individual molecules of the G-protein-coupled receptor, rhodopsin. Timely rhodopsin desensitization depends on phosphorylation and arrestin binding, which quenches G-protein activation. Rhodopsin phosphorylation has been measured biochemically at C-terminal serine residues, suggesting that these residues are critical for producing fast, low noise responses. The role of native threonine residues is unclear. We compared single-photon responses from rhodopsin lacking native serine or threonine phosphorylation sites. Contrary to expectation, serine-only rhodopsin generated prolonged step-like single-photon responses that terminated abruptly and randomly, whereas threonine-only rhodopsin generated responses that were only modestly slower than normal. We show that the step-like responses of serine-only rhodopsin reflect slow and stochastic arrestin binding. Thus, threonine sites play a privileged role in promoting timely arrestin binding and rhodopsin desensitization. Similar coordination of phosphorylation and arrestin binding may more generally permit tight control of the duration of G-protein-coupled receptor activity.

Article and author information

Author details

  1. Anthony W Azevedo

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Thuy Doan

    Department of Ophthalmology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hormoz Moaven

    Departments of Cell & Neurobiology and Ophthalmology, Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Iza Sokal

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Faiza Baameur

    Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sergey A Vishnivetskiy

    Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kristoff T Homan

    Life Sciences Institute, Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. John J G Tesmer

    Life Sciences Institute, Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Vsevolod V Gurevich

    Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jeannie Chen

    Departments of Cell & Neurobiology and Ophthalmology, Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Fred Rieke

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    For correspondence
    rieke@u.washington.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This work was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures followed protocols approved by the Institutional Animal Care and Use Committee (protocol 3030-01) of the University of Washington.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: December 9, 2014
  2. Accepted: April 23, 2015
  3. Accepted Manuscript published: April 24, 2015 (version 1)
  4. Version of Record published: May 20, 2015 (version 2)

Copyright

© 2015, Azevedo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,865
    Page views
  • 480
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony W Azevedo
  2. Thuy Doan
  3. Hormoz Moaven
  4. Iza Sokal
  5. Faiza Baameur
  6. Sergey A Vishnivetskiy
  7. Kristoff T Homan
  8. John J G Tesmer
  9. Vsevolod V Gurevich
  10. Jeannie Chen
  11. Fred Rieke
(2015)
C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor
eLife 4:e05981.
https://doi.org/10.7554/eLife.05981

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Elliott L Paine, Jack J Skalicky ... Wesley I Sundquist
    Research Advance

    The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery mediates the membrane fission step that completes cytokinetic abscission and separates dividing cells. Filaments composed of ESCRT-III subunits constrict membranes of the intercellular bridge midbody to the abscission point. These filaments also bind and recruit cofactors whose activities help execute abscission and/or delay abscission timing in response to mitotic errors via the NoCut/Abscission checkpoint. We previously showed that the ESCRT-III subunit IST1 binds the cysteine protease CAPN7 (Calpain-7) and that CAPN7 is required for both efficient abscission and NoCut checkpoint maintenance (Wenzel et al., 2022). Here, we report biochemical and crystallographic studies showing that the tandem MIT domains of CAPN7 bind simultaneously to two distinct IST1 MIT interaction motifs. Structure-guided point mutations in either CAPN7 MIT domain disrupted IST1 binding in vitro and in cells, and depletion/rescue experiments showed that the CAPN7-IST1 interaction is required for: 1) CAPN7 recruitment to midbodies, 2) efficient abscission, and 3) NoCut checkpoint arrest. CAPN7 proteolytic activity is also required for abscission and checkpoint maintenance. Hence, IST1 recruits CAPN7 to midbodies, where its proteolytic activity is required to regulate and complete abscission.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Nina Gubensäk, Theo Sagmeister ... Tea Pavkov-Keller
    Research Article

    The seventh pandemic of the diarrheal cholera disease, which began in 1960, is caused by the Gram-negative bacterium Vibrio cholerae. Its environmental persistence provoking recurring sudden outbreaks is enabled by V. cholerae's rapid adaption to changing environments involving sensory proteins like ToxR and ToxS. Located at the inner membrane, ToxR and ToxS react to environmental stimuli like bile acid, thereby inducing survival strategies e.g. bile resistance and virulence regulation. The presented crystal structure of the sensory domains of ToxR and ToxS in combination with multiple bile acid interaction studies, reveals that a bile binding pocket of ToxS is only properly folded upon binding to ToxR. Our data proposes an interdependent functionality between ToxR transcriptional activity and ToxS sensory function. These findings support the previously suggested link between ToxRS and VtrAC-like co-component systems. Besides VtrAC, ToxRS is now the only experimentally determined structure within this recently defined superfamily, further emphasizing its significance. In-depth analysis of the ToxRS complex reveals its remarkable conservation across various Vibrio species, underlining the significance of conserved residues in the ToxS barrel and the more diverse ToxR sensory domain. Unravelling the intricate mechanisms governing ToxRS's environmental sensing capabilities, provides a promising tool for disruption of this vital interaction, ultimately inhibiting Vibrio's survival and virulence. Our findings hold far-reaching implications for all Vibrio strains that rely on the ToxRS system as a shared sensory cornerstone for adapting to their surroundings.