No turnover in lens lipids for the entire human lifespan

  1. Jessica R Hughes  Is a corresponding author
  2. Vladimir A Levchenko
  3. Stephen J Blanksby
  4. Todd W Mitchell
  5. Alan Williams
  6. Roger J W Truscott
  1. University of Wollongong, Australia
  2. The Australian Nuclear Science and Technology Organisation, Australia
  3. Queensland University of Technology, Australia

Abstract

Lipids are critical to cellular function and it is generally accepted that lipid turnover is rapid and dysregulation in turnover results in disease (Dawidowicz 1987, Phillips et al. 2009, Liu et al. 2013). Here we present an intriguing counter-example by demonstrating that in the center of the human ocular lens there is no lipid turnover in fiber cells during the entire human lifespan. This discovery, combined with prior demonstration of pronounced changes in the lens lipid composition over a lifetime (Hughes et al. 2012), suggests that some lipid classes break down in the body over several decades, whereas others are stable. Such substantial changes in lens cell membranes may play a role in the genesis of age-related eye disorders. Whether long-lived lipids are present in other tissues is not yet known, but this may prove to be important in understanding the development of age-related diseases.

Article and author information

Author details

  1. Jessica R Hughes

    School of Medicine, University of Wollongong, Wollongong, Australia
    For correspondence
    jnealon@uow.edu.au
    Competing interests
    The authors declare that no competing interests exist.
  2. Vladimir A Levchenko

    The Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen J Blanksby

    Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Todd W Mitchell

    School of Medicine, University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Alan Williams

    The Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Roger J W Truscott

    Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jeremy Nathans, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States

Ethics

Human subjects: All work was approved by the human research ethics committees at the University of Sydney (#7292) and the University of Wollongong (HE 99/001). All human lenses from this study were donated to the Sydney Eye Bank.

Version history

  1. Received: December 10, 2014
  2. Accepted: March 10, 2015
  3. Accepted Manuscript published: March 11, 2015 (version 1)
  4. Version of Record published: April 2, 2015 (version 2)

Copyright

© 2015, Hughes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,474
    views
  • 349
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica R Hughes
  2. Vladimir A Levchenko
  3. Stephen J Blanksby
  4. Todd W Mitchell
  5. Alan Williams
  6. Roger J W Truscott
(2015)
No turnover in lens lipids for the entire human lifespan
eLife 4:e06003.
https://doi.org/10.7554/eLife.06003

Share this article

https://doi.org/10.7554/eLife.06003

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.