The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes

Abstract

Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies.

Article and author information

Author details

  1. Ying-Ju Chang

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Scott Pownall

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Elbenhardt Jensen

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Samar Mouaaz

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Warren Foltz

    Spatio-Temporal Targeting and Amplification of Radiation Response Program, Office of Research Trainees, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Lily Zhou

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicole Liadis

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Mina Woo

    Toronto General Research Institute, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhenyue Hao

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Previn Dutt

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Philip J Bilan

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Amira Klip

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Tak Mak

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Vuk Stambolic

    Princess Margaret Cancer Center, University Health Network, Toronto, Canada
    For correspondence
    vuks@uhnresearch.ca
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal work was conducted according to the Policies and Guidelines of the Canadian Council on Animal Care and the Province of Ontario's Animals for Research Act. The protocol was approved by the Animal Care Committee of Princess Margaret Cancer Center at University Health Network (permit Number:933 and 2176).

Copyright

© 2015, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,775
    views
  • 354
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying-Ju Chang
  2. Scott Pownall
  3. Thomas Elbenhardt Jensen
  4. Samar Mouaaz
  5. Warren Foltz
  6. Lily Zhou
  7. Nicole Liadis
  8. Mina Woo
  9. Zhenyue Hao
  10. Previn Dutt
  11. Philip J Bilan
  12. Amira Klip
  13. Tak Mak
  14. Vuk Stambolic
(2015)
The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes
eLife 4:e06011.
https://doi.org/10.7554/eLife.06011

Share this article

https://doi.org/10.7554/eLife.06011

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cell Biology
    2. Physics of Living Systems
    Marta Urbanska, Yan Ge ... Jochen Guck
    Research Article

    Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here, we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy, and specific to the mechanical phenotype across the studied mouse and human systems, and demonstrate experimentally that a selected target, CAV1, changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way toward engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.