1. Cancer Biology
Download icon

Inhibition of mutant EGFR in lung cancer cells triggers SOX2-FOXO6 dependent survival pathways

Research Article
  • Cited 22
  • Views 3,871
  • Annotations
Cite this article as: eLife 2015;4:e06132 doi: 10.7554/eLife.06132

Abstract

Treatment of EGFR-mutant lung cancer with erlotinib results in dramatic tumor regression but it is invariably followed by drug resistance. In characterizing early transcriptional changes following drug treatment of mutant EGFR-addicted cells, we identified the stem cell transcriptional regulator SOX2 as being rapidly and specifically induced, both in vitro and in vivo. Suppression of SOX2 sensitizes cells to erlotinib-mediated apoptosis, ultimately decreasing the emergence of acquired resistance, whereas its ectopic expression reduces drug-induced cell death. We show that erlotinib relieves EGFR-dependent suppression of FOXO6, leading to its induction of SOX2, which in turn represses the pro-apoptotic BH3-only genes BIM and BMF. Together, these observations point to a physiological feedback mechanism that attenuates oncogene addiction-mediated cell death associated with the withdrawal of growth factor signaling and may therefore contribute to the development of resistance.

Article and author information

Author details

  1. S Michael Rothenberg

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kyle Concannon

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah Cullen

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gaylor Boulay

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexa B Turke

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Anthony C Faber

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth L Lockerman

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Miguel N Rivera

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jeffrey A Engelman

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shyamala Maheswaran

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel A Haber

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    For correspondence
    dhaber@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal studies were conducted through Institutional Animal Care and Use Committee (IUCAC)-approved animal protocol 2010N000006 from the Massachusetts General Hospital. Mice were maintained in laminar flow units in aseptic condition and the care and treatment of all mice was in in accordance with institutional guidelines.

Reviewing Editor

  1. Roger Davis, University of Massachusetts Medical School, United States

Publication history

  1. Received: December 18, 2014
  2. Accepted: February 3, 2015
  3. Accepted Manuscript published: February 16, 2015 (version 1)
  4. Version of Record published: March 3, 2015 (version 2)

Copyright

© 2015, Rothenberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,871
    Page views
  • 756
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)