Abstract

Treatment of EGFR-mutant lung cancer with erlotinib results in dramatic tumor regression but it is invariably followed by drug resistance. In characterizing early transcriptional changes following drug treatment of mutant EGFR-addicted cells, we identified the stem cell transcriptional regulator SOX2 as being rapidly and specifically induced, both in vitro and in vivo. Suppression of SOX2 sensitizes cells to erlotinib-mediated apoptosis, ultimately decreasing the emergence of acquired resistance, whereas its ectopic expression reduces drug-induced cell death. We show that erlotinib relieves EGFR-dependent suppression of FOXO6, leading to its induction of SOX2, which in turn represses the pro-apoptotic BH3-only genes BIM and BMF. Together, these observations point to a physiological feedback mechanism that attenuates oncogene addiction-mediated cell death associated with the withdrawal of growth factor signaling and may therefore contribute to the development of resistance.

Article and author information

Author details

  1. S Michael Rothenberg

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kyle Concannon

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah Cullen

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gaylor Boulay

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexa B Turke

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Anthony C Faber

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth L Lockerman

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Miguel N Rivera

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jeffrey A Engelman

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shyamala Maheswaran

    Cancer Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel A Haber

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    For correspondence
    dhaber@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal studies were conducted through Institutional Animal Care and Use Committee (IUCAC)-approved animal protocol 2010N000006 from the Massachusetts General Hospital. Mice were maintained in laminar flow units in aseptic condition and the care and treatment of all mice was in in accordance with institutional guidelines.

Copyright

© 2015, Rothenberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,194
    views
  • 825
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. S Michael Rothenberg
  2. Kyle Concannon
  3. Sarah Cullen
  4. Gaylor Boulay
  5. Alexa B Turke
  6. Anthony C Faber
  7. Elizabeth L Lockerman
  8. Miguel N Rivera
  9. Jeffrey A Engelman
  10. Shyamala Maheswaran
  11. Daniel A Haber
(2015)
Inhibition of mutant EGFR in lung cancer cells triggers SOX2-FOXO6 dependent survival pathways
eLife 4:e06132.
https://doi.org/10.7554/eLife.06132

Share this article

https://doi.org/10.7554/eLife.06132

Further reading

    1. Cancer Biology
    Qianqian Ju, Wenjing Sheng ... Cheng Sun
    Research Article

    TAK1 is a serine/threonine protein kinase that is a key regulator in a wide variety of cellular processes. However, the functions and mechanisms involved in cancer metastasis are still not well understood. Here, we found that TAK1 knockdown promoted esophageal squamous cancer carcinoma (ESCC) migration and invasion, whereas TAK1 overexpression resulted in the opposite outcome. These in vitro findings were recapitulated in vivo in a xenograft metastatic mouse model. Mechanistically, co-immunoprecipitation and mass spectrometry demonstrated that TAK1 interacted with phospholipase C epsilon 1 (PLCE1) and phosphorylated PLCE1 at serine 1060 (S1060). Functional studies revealed that phosphorylation at S1060 in PLCE1 resulted in decreased enzyme activity, leading to the repression of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. As a result, the degradation products of PIP2 including diacylglycerol (DAG) and inositol IP3 were reduced, which thereby suppressed signal transduction in the axis of PKC/GSK-3β/β-Catenin. Consequently, expression of cancer metastasis-related genes was impeded by TAK1. Overall, our data indicate that TAK1 plays a negative role in ESCC metastasis, which depends on the TAK1-induced phosphorylation of PLCE1 at S1060.

    1. Cancer Biology
    2. Cell Biology
    Xiangning Bu, Nathanael Ashby ... Inhee Chung
    Research Article

    Cell crowding is a common microenvironmental factor influencing various disease processes, but its role in promoting cell invasiveness remains unclear. This study investigates the biomechanical changes induced by cell crowding, focusing on pro-invasive cell volume reduction in ductal carcinoma in situ (DCIS). Crowding specifically enhanced invasiveness in high-grade DCIS cells through significant volume reduction compared to hyperplasia-mimicking or normal cells. Mass spectrometry revealed that crowding selectively relocated ion channels, including TRPV4, to the plasma membrane in high-grade DCIS cells. TRPV4 inhibition triggered by crowding decreased intracellular calcium levels, reduced cell volume, and increased invasion and motility. During this process, TRPV4 membrane relocation primed the channel for later activation, compensating for calcium loss. Analyses of patient-derived breast cancer tissues confirmed that plasma membrane-associated TRPV4 is specific to high-grade DCIS and indicates the presence of a pro-invasive cell volume reduction mechanotransduction pathway. Hyperosmotic conditions and pharmacologic TRPV4 inhibition mimicked crowding-induced effects, while TRPV4 activation reversed them. Silencing TRPV4 diminished mechanotransduction in high-grade DCIS cells, reducing calcium depletion, volume reduction, and motility. This study uncovers a novel pro-invasive mechanotransduction pathway driven by cell crowding and identifies TRPV4 as a potential biomarker for predicting invasion risk in DCIS patients.