Extensive site-directed mutagenesis reveals interconnected functional units in the Alkaline Phosphatase active site

  1. Fanny Sunden  Is a corresponding author
  2. Ariana Peck
  3. Julia Salzman
  4. Susanne Ressl
  5. Daniel Herschlag
  1. Stanford University, United States
  2. Indiana University Bloomington, United States

Abstract

Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of E. Coli Alkaline Phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.

Article and author information

Author details

  1. Fanny Sunden

    Department of Biochemistry, Beckman Center, Stanford University, Stanford, United States
    For correspondence
    fsunden@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Ariana Peck

    Department of Biochemistry, Beckman Center, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Julia Salzman

    Department of Biochemistry, Beckman Center, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Susanne Ressl

    Molecular and Cellular Biochemistry Department, Indiana University Bloomington, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Herschlag

    Department of Biochemistry, Beckman Center, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. John Kuriyan, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: December 20, 2014
  2. Accepted: April 22, 2015
  3. Accepted Manuscript published: April 22, 2015 (version 1)
  4. Version of Record published: May 20, 2015 (version 2)

Copyright

© 2015, Sunden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,347
    views
  • 741
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fanny Sunden
  2. Ariana Peck
  3. Julia Salzman
  4. Susanne Ressl
  5. Daniel Herschlag
(2015)
Extensive site-directed mutagenesis reveals interconnected functional units in the Alkaline Phosphatase active site
eLife 4:e06181.
https://doi.org/10.7554/eLife.06181

Share this article

https://doi.org/10.7554/eLife.06181

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.