Fatty acyl-chain remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport

  1. Tomomi Hashidate-Yoshida
  2. Takeshi Harayama
  3. Daisuke Hishikawa
  4. Ryo Morimoto
  5. Fumie Hamano
  6. Suzumi M Tokuoka
  7. Miki Eto
  8. Miwa Tamura-Nakano
  9. Rieko Yanobu-Takanashi
  10. Yoshiko Mukumoto
  11. Hiroshi Kiyonari
  12. Tadashi Okamura
  13. Yoshihiro Kita
  14. Hideo Shindou
  15. Takao Shimizu  Is a corresponding author
  1. National Center for Global Health and Medicine, Japan
  2. National Center for Global Health and Medicine, Switzerland
  3. The University of Tokyo, Japan
  4. RIKEN Center for Developmental Biology, Japan

Abstract

Polyunsaturated fatty acids (PUFAs) in phospholipids affect the physical properties of membranes, but it is unclear which biological processes are influenced by their regulation. For example, the functions of membrane arachidonate that are independent of a precursor role for eicosanoid synthesis remain largely unknown. Here, we show that the lack of lysophosphatidylcholine acyltransferase 3 (LPCAT3) leads to drastic reductions in membrane arachidonate levels, and that LPCAT3-deficient mice are neonatally lethal due to an extensive triacylglycerol (TG) accumulation and dysfunction in enterocytes. We found that high levels of PUFAs in membranes enable TGs to locally cluster in high density, and that this clustering promotes efficient TG transfer. We propose a model of local arachidonate enrichment by LPCAT3 to generate a distinct pool of TG in membranes, which is required for normal directionality of TG transfer and lipoprotein assembly in the liver and enterocytes.

Article and author information

Author details

  1. Tomomi Hashidate-Yoshida

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  2. Takeshi Harayama

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Switzerland
    Competing interests
    No competing interests declared.
  3. Daisuke Hishikawa

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  4. Ryo Morimoto

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    Ryo Morimoto, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..
  5. Fumie Hamano

    Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    Fumie Hamano, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..
  6. Suzumi M Tokuoka

    Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    Suzumi M Tokuoka, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..
  7. Miki Eto

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    Miki Eto, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..
  8. Miwa Tamura-Nakano

    Communal Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  9. Rieko Yanobu-Takanashi

    Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  10. Yoshiko Mukumoto

    Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    No competing interests declared.
  11. Hiroshi Kiyonari

    Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    No competing interests declared.
  12. Tadashi Okamura

    Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  13. Yoshihiro Kita

    Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    Yoshihiro Kita, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..
  14. Hideo Shindou

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  15. Takao Shimizu

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    For correspondence
    tshimizu@ri.ncgm.go.jp
    Competing interests
    Takao Shimizu, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..

Ethics

Animal experimentation: All animal experiments were approved by and performed in accordance with the guidelines of the Animal Research Committee of National Center for Global Health and Medicine (12053, 13009, 14045), and the animal experimentation committee of the University of Tokyo (H09-144, P08-042).

Copyright

© 2015, Hashidate-Yoshida et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,109
    views
  • 1,348
    downloads
  • 183
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tomomi Hashidate-Yoshida
  2. Takeshi Harayama
  3. Daisuke Hishikawa
  4. Ryo Morimoto
  5. Fumie Hamano
  6. Suzumi M Tokuoka
  7. Miki Eto
  8. Miwa Tamura-Nakano
  9. Rieko Yanobu-Takanashi
  10. Yoshiko Mukumoto
  11. Hiroshi Kiyonari
  12. Tadashi Okamura
  13. Yoshihiro Kita
  14. Hideo Shindou
  15. Takao Shimizu
(2015)
Fatty acyl-chain remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport
eLife 4:e06328.
https://doi.org/10.7554/eLife.06328

Share this article

https://doi.org/10.7554/eLife.06328

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.