Fatty acyl-chain remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport

  1. Tomomi Hashidate-Yoshida
  2. Takeshi Harayama
  3. Daisuke Hishikawa
  4. Ryo Morimoto
  5. Fumie Hamano
  6. Suzumi M Tokuoka
  7. Miki Eto
  8. Miwa Tamura-Nakano
  9. Rieko Yanobu-Takanashi
  10. Yoshiko Mukumoto
  11. Hiroshi Kiyonari
  12. Tadashi Okamura
  13. Yoshihiro Kita
  14. Hideo Shindou
  15. Takao Shimizu  Is a corresponding author
  1. National Center for Global Health and Medicine, Japan
  2. National Center for Global Health and Medicine, Switzerland
  3. The University of Tokyo, Japan
  4. RIKEN Center for Developmental Biology, Japan

Abstract

Polyunsaturated fatty acids (PUFAs) in phospholipids affect the physical properties of membranes, but it is unclear which biological processes are influenced by their regulation. For example, the functions of membrane arachidonate that are independent of a precursor role for eicosanoid synthesis remain largely unknown. Here, we show that the lack of lysophosphatidylcholine acyltransferase 3 (LPCAT3) leads to drastic reductions in membrane arachidonate levels, and that LPCAT3-deficient mice are neonatally lethal due to an extensive triacylglycerol (TG) accumulation and dysfunction in enterocytes. We found that high levels of PUFAs in membranes enable TGs to locally cluster in high density, and that this clustering promotes efficient TG transfer. We propose a model of local arachidonate enrichment by LPCAT3 to generate a distinct pool of TG in membranes, which is required for normal directionality of TG transfer and lipoprotein assembly in the liver and enterocytes.

Article and author information

Author details

  1. Tomomi Hashidate-Yoshida

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  2. Takeshi Harayama

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Switzerland
    Competing interests
    No competing interests declared.
  3. Daisuke Hishikawa

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  4. Ryo Morimoto

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    Ryo Morimoto, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..
  5. Fumie Hamano

    Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    Fumie Hamano, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..
  6. Suzumi M Tokuoka

    Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    Suzumi M Tokuoka, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..
  7. Miki Eto

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    Miki Eto, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..
  8. Miwa Tamura-Nakano

    Communal Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  9. Rieko Yanobu-Takanashi

    Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  10. Yoshiko Mukumoto

    Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    No competing interests declared.
  11. Hiroshi Kiyonari

    Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    No competing interests declared.
  12. Tadashi Okamura

    Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  13. Yoshihiro Kita

    Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    Yoshihiro Kita, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..
  14. Hideo Shindou

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  15. Takao Shimizu

    Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
    For correspondence
    tshimizu@ri.ncgm.go.jp
    Competing interests
    Takao Shimizu, Department of Lipidomics, the University of Tokyo is financially supported by Shimadzu Co., and ONO Phamraceutical Col. Ltd..

Reviewing Editor

  1. Ben Cravatt, The Scripps Research Institute, United States

Ethics

Animal experimentation: All animal experiments were approved by and performed in accordance with the guidelines of the Animal Research Committee of National Center for Global Health and Medicine (12053, 13009, 14045), and the animal experimentation committee of the University of Tokyo (H09-144, P08-042).

Version history

  1. Received: January 8, 2015
  2. Accepted: April 19, 2015
  3. Accepted Manuscript published: April 21, 2015 (version 1)
  4. Version of Record published: May 19, 2015 (version 2)

Copyright

© 2015, Hashidate-Yoshida et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,060
    Page views
  • 1,315
    Downloads
  • 147
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tomomi Hashidate-Yoshida
  2. Takeshi Harayama
  3. Daisuke Hishikawa
  4. Ryo Morimoto
  5. Fumie Hamano
  6. Suzumi M Tokuoka
  7. Miki Eto
  8. Miwa Tamura-Nakano
  9. Rieko Yanobu-Takanashi
  10. Yoshiko Mukumoto
  11. Hiroshi Kiyonari
  12. Tadashi Okamura
  13. Yoshihiro Kita
  14. Hideo Shindou
  15. Takao Shimizu
(2015)
Fatty acyl-chain remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport
eLife 4:e06328.
https://doi.org/10.7554/eLife.06328

Share this article

https://doi.org/10.7554/eLife.06328

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.