Recruitment of the default mode network during a demanding act of executive control

  1. Ben M Crittenden  Is a corresponding author
  2. Daniel J Mitchell
  3. John Duncan
  1. Medical Research Council Cognition and Brain Sciences Unit, United Kingdom

Abstract

In the human brain, a default mode or task-negative network shows reduced activity during many cognitive tasks, and is often associated with internally-directed processes such as mind wandering and thoughts about the self. In contrast to this task-negative pattern, we show increased activity during a large and demanding switch in task set. Furthermore, we employ multi-voxel pattern analysis and find that regions of interest within default mode network are encoding task-relevant information during task performance. Activity in this network may be driven by major revisions of cognitive context, whether internally or externally focused.

Article and author information

Author details

  1. Ben M Crittenden

    Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
    For correspondence
    ben.crittenden@psych.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel J Mitchell

    Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. John Duncan

    Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained through the University of Cambridge ethics committee:CPREC (Cambridge Psychology Research Ethics) 2010.16.

Copyright

© 2015, Crittenden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,068
    views
  • 656
    downloads
  • 136
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ben M Crittenden
  2. Daniel J Mitchell
  3. John Duncan
(2015)
Recruitment of the default mode network during a demanding act of executive control
eLife 4:e06481.
https://doi.org/10.7554/eLife.06481

Share this article

https://doi.org/10.7554/eLife.06481

Further reading

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.