Recruitment of the default mode network during a demanding act of executive control

  1. Ben M Crittenden  Is a corresponding author
  2. Daniel J Mitchell
  3. John Duncan
  1. Medical Research Council Cognition and Brain Sciences Unit, United Kingdom

Abstract

In the human brain, a default mode or task-negative network shows reduced activity during many cognitive tasks, and is often associated with internally-directed processes such as mind wandering and thoughts about the self. In contrast to this task-negative pattern, we show increased activity during a large and demanding switch in task set. Furthermore, we employ multi-voxel pattern analysis and find that regions of interest within default mode network are encoding task-relevant information during task performance. Activity in this network may be driven by major revisions of cognitive context, whether internally or externally focused.

Article and author information

Author details

  1. Ben M Crittenden

    Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
    For correspondence
    ben.crittenden@psych.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel J Mitchell

    Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. John Duncan

    Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained through the University of Cambridge ethics committee:CPREC (Cambridge Psychology Research Ethics) 2010.16.

Copyright

© 2015, Crittenden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,089
    views
  • 660
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.06481

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.