Recruitment of the default mode network during a demanding act of executive control

  1. Ben M Crittenden  Is a corresponding author
  2. Daniel J Mitchell
  3. John Duncan
  1. Medical Research Council Cognition and Brain Sciences Unit, United Kingdom

Abstract

In the human brain, a default mode or task-negative network shows reduced activity during many cognitive tasks, and is often associated with internally-directed processes such as mind wandering and thoughts about the self. In contrast to this task-negative pattern, we show increased activity during a large and demanding switch in task set. Furthermore, we employ multi-voxel pattern analysis and find that regions of interest within default mode network are encoding task-relevant information during task performance. Activity in this network may be driven by major revisions of cognitive context, whether internally or externally focused.

Article and author information

Author details

  1. Ben M Crittenden

    Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
    For correspondence
    ben.crittenden@psych.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel J Mitchell

    Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. John Duncan

    Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained through the University of Cambridge ethics committee:CPREC (Cambridge Psychology Research Ethics) 2010.16.

Copyright

© 2015, Crittenden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,055
    views
  • 652
    downloads
  • 135
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ben M Crittenden
  2. Daniel J Mitchell
  3. John Duncan
(2015)
Recruitment of the default mode network during a demanding act of executive control
eLife 4:e06481.
https://doi.org/10.7554/eLife.06481

Share this article

https://doi.org/10.7554/eLife.06481

Further reading

    1. Neuroscience
    Cuong Pham, Yuji Komaki ... Dongdong Li
    Research Article

    Brain water homeostasis not only provides a physical protection, but also determines the diffusion of chemical molecules key for information processing and metabolic stability. As a major type of glia in brain parenchyma, astrocytes are the dominant cell type expressing aquaporin water channel. How astrocyte aquaporin contributes to brain water homeostasis in basal physiology remains to be understood. We report that astrocyte aquaporin 4 (AQP4) mediates a tonic water efflux in basal conditions. Acute inhibition of astrocyte AQP4 leads to intracellular water accumulation as optically resolved by fluorescence-translated imaging in acute brain slices, and in vivo by fiber photometry in mobile mice. We then show that aquaporin-mediated constant water efflux maintains astrocyte volume and osmotic equilibrium, astrocyte and neuron Ca2+ signaling, and extracellular space remodeling during optogenetically induced cortical spreading depression. Using diffusion-weighted magnetic resonance imaging (DW-MRI), we observed that in vivo inhibition of AQP4 water efflux heterogeneously disturbs brain water homeostasis in a region-dependent manner. Our data suggest that astrocyte aquaporin, though bidirectional in nature, mediates a tonic water outflow to sustain cellular and environmental equilibrium in brain parenchyma.