The critical role of membralin in postnatal motor neuron survival and disease

  1. Bo Yang
  2. Mingliang Qu
  3. Rengang Wang
  4. Jon E Chatterton
  5. Xiao-Bo Liu
  6. Bing Zhu
  7. Sonoko Narisawa
  8. Jose Luis Millan
  9. Nobuki Nakanishi
  10. Kathryn Swoboda
  11. Stuart A Lipton
  12. Dongxian Zhang  Is a corresponding author
  1. Eugenom, Inc., United States
  2. Shanghai Yuanqi Clinical Lab Ltd., China
  3. Sanford-Burnham Medical Research Institute, United States
  4. University of California, Davis, United States
  5. Massachusetts General Hospital, United States

Abstract

Hitherto, membralin has been a protein of unknown function. Here, we show that membralin mutant mice manifest a severe and early-onset motor neuron disease in an autosomal recessive manner, dying by postnatal day 5-6. Selective death of lower motor neurons, including those innervating the limbs, intercostal muscles, and diaphragm, are predominantly responsible for this fatal phenotype. Neural expression of a membralin transgene completely rescues membralin mutant mice. Mechanistically, we show that membralin interacts with Erlin2, an endoplasmic reticulum (ER) membrane protein that is located in lipid rafts and known to be important in ER-associated protein degradation (ERAD). Accordingly, the degradation rate of ERAD substrates is attenuated in cells lacking membralin. Membralin mutations or deficiency in mouse models induce ER stress, rendering neurons more vulnerable to cell death. Our study reveals a critical role of membralin in motor neuron survival and suggests a novel mechanism for early-onset motor neuron disease.

Article and author information

Author details

  1. Bo Yang

    Eugenom, Inc., San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mingliang Qu

    Shanghai Yuanqi Clinical Lab Ltd., Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Rengang Wang

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jon E Chatterton

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiao-Bo Liu

    Electron Microscopy Laboratory, Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bing Zhu

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sonoko Narisawa

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jose Luis Millan

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nobuki Nakanishi

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kathryn Swoboda

    Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Stuart A Lipton

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Dongxian Zhang

    Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, La Jolla, United States
    For correspondence
    dzhang@sbmri.org
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All described procedures for animal were approved by the Institutional Animal Care and Use Committee of Sanford-Burnham Medical Research Institute and conducted in compliance with the Guide for the Care and Use of Laboratory Animals (Animal Use Form #14-060). Both sexes of mice were used for experiments and maintained in an institute facility accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Copyright

© 2015, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,732
    views
  • 365
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bo Yang
  2. Mingliang Qu
  3. Rengang Wang
  4. Jon E Chatterton
  5. Xiao-Bo Liu
  6. Bing Zhu
  7. Sonoko Narisawa
  8. Jose Luis Millan
  9. Nobuki Nakanishi
  10. Kathryn Swoboda
  11. Stuart A Lipton
  12. Dongxian Zhang
(2015)
The critical role of membralin in postnatal motor neuron survival and disease
eLife 4:e06500.
https://doi.org/10.7554/eLife.06500

Share this article

https://doi.org/10.7554/eLife.06500

Further reading

    1. Neuroscience
    Jian Dong, Mian Chen ... Matthijs Verhage
    Research Article

    Dense core vesicles (DCVs) transport and release various neuropeptides and neurotrophins that control diverse brain functions, but the DCV secretory pathway remains poorly understood. Here, we tested a prediction emerging from invertebrate studies about the crucial role of the intracellular trafficking GTPase Rab10, by assessing DCV exocytosis at single-cell resolution upon acute Rab10 depletion in mature mouse hippocampal neurons, to circumvent potential confounding effects of Rab10’s established role in neurite outgrowth. We observed a significant inhibition of DCV exocytosis in Rab10-depleted neurons, whereas synaptic vesicle exocytosis was unaffected. However, rather than a direct involvement in DCV trafficking, this effect was attributed to two ER-dependent processes, ER-regulated intracellular Ca2+ dynamics, and protein synthesis. Gene Ontology analysis of differentially expressed proteins upon Rab10 depletion identified substantial alterations in synaptic and ER/ribosomal proteins, including the Ca2+ pump SERCA2. In addition, ER morphology and dynamics were altered, ER Ca2+ levels were depleted, and Ca2+ homeostasis was impaired in Rab10-depleted neurons. However, Ca2+ entry using a Ca2+ ionophore still triggered less DCV exocytosis. Instead, leucine supplementation, which enhances protein synthesis, largely rescued DCV exocytosis deficiency. We conclude that Rab10 is required for neuropeptide release by maintaining Ca2+ dynamics and regulating protein synthesis. Furthermore, DCV exocytosis appeared more dependent on (acute) protein synthesis than synaptic vesicle exocytosis.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.