Catastrophic chromosomal restructuring during genome elimination in plants

  1. Ek Han Tan
  2. Isabelle M Henry
  3. Maruthachalam Ravi
  4. Keith R Bradnam
  5. Terezie Mandakova
  6. Mohan P A Marimuthu
  7. Ian Korf
  8. Martin A Lysak
  9. Luca Comai  Is a corresponding author
  10. Simon W L Chan
  1. University of California, Davis, United States
  2. Indian Institute of Science Education and Research, India
  3. Masaryk University, Czech Republic

Abstract

Genome instability is associated with mitotic errors and cancer. This phenomenon can lead to deleterious rearrangements, but also genetic novelty, and many questions regarding its genesis, fate and evolutionary role remain unanswered. Here, we describe extreme chromosomal restructuring during genome elimination, a process resulting from hybridization of Arabidopsis plants expressing different centromere histones H3. Shattered chromosomes are formed from the genome of the haploid inducer, consistent with genomic catastrophes affecting a single, laggard chromosome compartmentalized within a micronucleus. Analysis of breakpoint junctions implicates breaks followed by repair through non-homologous end joining (NHEJ) or stalled fork repair. Furthermore, mutation of required NHEJ factor DNA Ligase 4 results in enhanced haploid recovery. Lastly, heritability and stability of a rearranged chromosome suggest a potential for enduring genomic novelty. These findings provide a tractable, natural system towards investigating the causes and mechanisms of complex genomic rearrangements similar to those associated with several human disorders.

Article and author information

Author details

  1. Ek Han Tan

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Isabelle M Henry

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maruthachalam Ravi

    School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Keith R Bradnam

    Genome Center, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Terezie Mandakova

    Central European Institute of Technology, Masaryk University, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Mohan P A Marimuthu

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ian Korf

    Genome Center, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Martin A Lysak

    Central European Institute of Technology, Masaryk University, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  9. Luca Comai

    Department of Plant Biology, University of California, Davis, Davis, United States
    For correspondence
    lcomai@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Simon W L Chan

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Bernard de Massy, Institute of Human Genetics, CNRS UPR 1142, France

Version history

  1. Received: January 16, 2015
  2. Accepted: May 14, 2015
  3. Accepted Manuscript published: May 15, 2015 (version 1)
  4. Version of Record published: June 10, 2015 (version 2)
  5. Version of Record updated: April 19, 2017 (version 3)

Copyright

© 2015, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,309
    views
  • 1,231
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ek Han Tan
  2. Isabelle M Henry
  3. Maruthachalam Ravi
  4. Keith R Bradnam
  5. Terezie Mandakova
  6. Mohan P A Marimuthu
  7. Ian Korf
  8. Martin A Lysak
  9. Luca Comai
  10. Simon W L Chan
(2015)
Catastrophic chromosomal restructuring during genome elimination in plants
eLife 4:e06516.
https://doi.org/10.7554/eLife.06516

Share this article

https://doi.org/10.7554/eLife.06516

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.