1. Chromosomes and Gene Expression
Download icon

Catastrophic chromosomal restructuring during genome elimination in plants

  1. Ek Han Tan
  2. Isabelle M Henry
  3. Maruthachalam Ravi
  4. Keith R Bradnam
  5. Terezie Mandakova
  6. Mohan P A Marimuthu
  7. Ian Korf
  8. Martin A Lysak
  9. Luca Comai  Is a corresponding author
  10. Simon W L Chan
  1. University of California, Davis, United States
  2. Indian Institute of Science Education and Research, India
  3. Masaryk University, Czech Republic
Research Article
  • Cited 47
  • Views 4,838
  • Annotations
Cite this article as: eLife 2015;4:e06516 doi: 10.7554/eLife.06516

Abstract

Genome instability is associated with mitotic errors and cancer. This phenomenon can lead to deleterious rearrangements, but also genetic novelty, and many questions regarding its genesis, fate and evolutionary role remain unanswered. Here, we describe extreme chromosomal restructuring during genome elimination, a process resulting from hybridization of Arabidopsis plants expressing different centromere histones H3. Shattered chromosomes are formed from the genome of the haploid inducer, consistent with genomic catastrophes affecting a single, laggard chromosome compartmentalized within a micronucleus. Analysis of breakpoint junctions implicates breaks followed by repair through non-homologous end joining (NHEJ) or stalled fork repair. Furthermore, mutation of required NHEJ factor DNA Ligase 4 results in enhanced haploid recovery. Lastly, heritability and stability of a rearranged chromosome suggest a potential for enduring genomic novelty. These findings provide a tractable, natural system towards investigating the causes and mechanisms of complex genomic rearrangements similar to those associated with several human disorders.

Article and author information

Author details

  1. Ek Han Tan

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Isabelle M Henry

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maruthachalam Ravi

    School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Keith R Bradnam

    Genome Center, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Terezie Mandakova

    Central European Institute of Technology, Masaryk University, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Mohan P A Marimuthu

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ian Korf

    Genome Center, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Martin A Lysak

    Central European Institute of Technology, Masaryk University, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  9. Luca Comai

    Department of Plant Biology, University of California, Davis, Davis, United States
    For correspondence
    lcomai@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Simon W L Chan

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Bernard de Massy, Institute of Human Genetics, CNRS UPR 1142, France

Publication history

  1. Received: January 16, 2015
  2. Accepted: May 14, 2015
  3. Accepted Manuscript published: May 15, 2015 (version 1)
  4. Version of Record published: June 10, 2015 (version 2)
  5. Version of Record updated: April 19, 2017 (version 3)

Copyright

© 2015, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,838
    Page views
  • 1,069
    Downloads
  • 47
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Arne Sahm et al.
    Research Article Updated

    Sexual activity and/or reproduction are associated with a doubling of life expectancy in the long-lived rodent genus Fukomys. To investigate the molecular mechanisms underlying this phenomenon, we analyzed 636 RNA-seq samples across 15 tissues. This analysis suggests that changes in the regulation of the hypothalamic–pituitary–adrenal stress axis play a key role regarding the extended life expectancy of reproductive vs. non-reproductive mole-rats. This is substantiated by a corpus of independent evidence. In accordance with previous studies, the up-regulation of the proteasome and so-called ‘anti-aging molecules’, for example, dehydroepiandrosterone, is linked with enhanced lifespan. On the other hand, several of our results are not consistent with knowledge about aging of short-lived model organisms. For example, we found the up-regulation of the insulin-like growth factor 1/growth hormone axis and several other anabolic processes to be compatible with a considerable lifespan prolongation. These contradictions question the extent to which findings from short-lived species can be transferred to longer-lived ones.

    1. Chromosomes and Gene Expression
    Emily Hsu et al.
    Research Article Updated

    Regulation of RNA polymerase II (Pol2) elongation in the promoter-proximal region is an important and ubiquitous control point for gene expression in metazoans. We report that transcription of the adenovirus 5 E4 region is regulated during the release of paused Pol2 into productive elongation by recruitment of the super-elongation complex, dependent on promoter H3K18/27 acetylation by CBP/p300. We also establish that this is a general transcriptional regulatory mechanism that applies to ~7% of expressed protein-coding genes in primary human airway epithelial cells. We observed that a homeostatic mechanism maintains promoter, but not enhancer, H3K18/27ac in response to extensive inhibition of CBP/p300 acetyl transferase activity by the highly specific small molecule inhibitor A-485. Further, our results suggest a function for BRD4 association at enhancers in regulating paused Pol2 release at nearby promoters. Taken together, our results uncover the processes regulating transcriptional elongation by promoter region histone H3 acetylation and homeostatic maintenance of promoter, but not enhancer, H3K18/27ac in response to inhibition of CBP/p300 acetyl transferase activity.