Tight junction protein 1a regulates pigment cell organisation during zebrafish colour patterning

  1. Andrey Fadeev
  2. Jana Krauss
  3. Hans Georg Frohnhöfer
  4. Uwe Irion
  5. Christiane Nüsslein-Volhard  Is a corresponding author
  1. Max Planck Institute for Developmental Biology, Germany

Abstract

Zebrafish display a prominent pattern of alternating dark and light stripes generated by the precise positioning of pigment cells in the skin. This arrangement is the result of coordinated cell movements, cell shape changes and the organisation of pigment cells during metamorphosis. Iridophores play a crucial part in this process by switching between the dense form of the light stripes and the loose form of the dark stripes. Adult schachbrett (sbr) mutants exhibit delayed changes in iridophore shape and organisation caused by truncations in Tight Junction Protein 1a (ZO-1a). In sbr mutants, the dark stripes are interrupted by dense iridophores invading as coherent sheets. Immuno-labelling and chimeric analyses indicate that Tjp1a is expressed in dense iridophores, but down-regulated in the loose form. Tjp-1a is a novel regulator of cell shape changes during colour pattern formation and the first cytoplasmic protein implicated in this process.

Article and author information

Author details

  1. Andrey Fadeev

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jana Krauss

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Hans Georg Frohnhöfer

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Uwe Irion

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Christiane Nüsslein-Volhard

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    For correspondence
    christiane.nuesslein-volhard@tuebingen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal experimentation: All animal experiments were performed in accordance with the rules of the State of Baden-Württemberg, Germany. The protocol for ENU mutagenesis was approved by the Regierungspräsidium Tübingen (Aktenzeichen: 35/9185.81-5/Tierversuch-Nr. E 1/09).

Copyright

© 2015, Fadeev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,387
    views
  • 465
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrey Fadeev
  2. Jana Krauss
  3. Hans Georg Frohnhöfer
  4. Uwe Irion
  5. Christiane Nüsslein-Volhard
(2015)
Tight junction protein 1a regulates pigment cell organisation during zebrafish colour patterning
eLife 4:e06545.
https://doi.org/10.7554/eLife.06545

Share this article

https://doi.org/10.7554/eLife.06545

Further reading

    1. Cell Biology
    2. Neuroscience
    Naoki Yamawaki, Hande Login ... Asami Tanimura
    Research Article

    The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (ENvCA1-proj. neurons), embedded in recurrent circuits with other EN neurons and the piriform cortex. Although the ENvCA1-proj. neuron activity was biased toward novelty across stimulus categories, their chemogenetic inhibition selectively disrupted the memory-guided but not innate responses of mice to novelty. Based on our functional connectivity analysis, we suggest that ENvCA1-proj. neurons serve as an essential node for recognition memory through recurrent circuits mediating sustained attention to novelty, and through feed-forward inhibition of distal vCA1 neurons shifting memory-guided behavior from familiarity to novelty.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.