Seasonal shift in timing of vernalization as an adaptation to extreme winter

  1. Susan Duncan
  2. Svante Holm
  3. Julia Questa
  4. Judith Irwin
  5. Alastair Grant
  6. Caroline Dean  Is a corresponding author
  1. John Innes Centre, United Kingdom
  2. Mid-Sweden University, Sweden
  3. University of East Anglia, United Kingdom

Abstract

The requirement for vernalization, a need for prolonged cold to trigger flowering, aligns reproductive development with favorable spring conditions. In Arabidopsis thaliana vernalization depends on the cold-induced epigenetic silencing of the floral repressor locus FLC. Extensive natural variation in vernalization response is associated with A. thaliana accessions collected from different geographical regions. Here, we analyse natural variation for vernalization temperature requirement in accessions, including those from the northern limit of the A. thaliana range. Vernalization required temperatures above 0oC and was still relatively effective at 14oC in all the accessions. The different accessions had characteristic vernalization temperature profiles. One Northern Swedish accession showed maximum vernalization at 8oC, both at the level of flowering time and FLC chromatin silencing. Historical temperature records predicted all accessions would vernalize in autumn in N. Sweden, a prediction we validated in field transplantation experiments. The vernalization response of the different accessions was monitored over three intervals in the field and found to match that when the average field temperature was given as a constant condition. The vernalization temperature range of 0-14oC meant all accessions fully vernalized before snowfall in N. Sweden. These findings have important implications for understanding the molecular basis of adaptation and for predicting the consequences of climate change on flowering time.

Article and author information

Author details

  1. Susan Duncan

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Svante Holm

    Mid-Sweden University, Sundsvall, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Julia Questa

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Judith Irwin

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Alastair Grant

    Department of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Caroline Dean

    John Innes Centre, Norwich, United Kingdom
    For correspondence
    caroline.dean@jic.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Version history

  1. Received: January 21, 2015
  2. Accepted: July 17, 2015
  3. Accepted Manuscript published: July 23, 2015 (version 1)
  4. Version of Record published: August 12, 2015 (version 2)

Copyright

© 2015, Duncan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,800
    views
  • 759
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susan Duncan
  2. Svante Holm
  3. Julia Questa
  4. Judith Irwin
  5. Alastair Grant
  6. Caroline Dean
(2015)
Seasonal shift in timing of vernalization as an adaptation to extreme winter
eLife 4:e06620.
https://doi.org/10.7554/eLife.06620

Share this article

https://doi.org/10.7554/eLife.06620

Further reading

    1. Ecology
    Lan Pang, Gangqi Fang ... Jianhua Huang
    Research Article

    The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell—teratocytes—that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.

    1. Ecology
    Keisuke Atsumi, Yuusuke Nishida ... Shogoro Fujiki
    Research Article

    Comprehensive biodiversity data is crucial for ecosystem protection. The Biome mobile app, launched in Japan, efficiently gathers species observations from the public using species identification algorithms and gamification elements. The app has amassed >6 million observations since 2019. Nonetheless, community-sourced data may exhibit spatial and taxonomic biases. Species distribution models (SDMs) estimate species distribution while accommodating such bias. Here, we investigated the quality of Biome data and its impact on SDM performance. Species identification accuracy exceeds 95% for birds, reptiles, mammals, and amphibians, but seed plants, molluscs, and fishes scored below 90%. Our SDMs for 132 terrestrial plants and animals across Japan revealed that incorporating Biome data into traditional survey data improved accuracy. For endangered species, traditional survey data required >2000 records for accurate models (Boyce index ≥ 0.9), while blending the two data sources reduced this to around 300. The uniform coverage of urban-natural gradients by Biome data, compared to traditional data biased towards natural areas, may explain this improvement. Combining multiple data sources better estimates species distributions, aiding in protected area designation and ecosystem service assessment. Establishing a platform for accumulating community-sourced distribution data will contribute to conserving and monitoring natural ecosystems.