1. Structural Biology and Molecular Biophysics
Download icon

Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud

  1. Michael A Cianfrocco  Is a corresponding author
  2. Andres E Leschziner
  1. Harvard University, United States
Tools and Resources
  • Cited 25
  • Views 5,706
  • Annotations
Cite this article as: eLife 2015;4:e06664 doi: 10.7554/eLife.06664

Abstract

The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16 to 480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1,500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

Article and author information

Author details

  1. Michael A Cianfrocco

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    mcianfrocco@fas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Andres E Leschziner

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sjors HW Scheres, Medical Research Council Laboratory of Molecular Biology, United Kingdom

Publication history

  1. Received: January 25, 2015
  2. Accepted: May 1, 2015
  3. Accepted Manuscript published: May 8, 2015 (version 1)
  4. Version of Record published: May 22, 2015 (version 2)

Copyright

© 2015, Cianfrocco & Leschziner

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,706
    Page views
  • 856
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Subu Subramanian et al.
    Research Article

    Clamp loaders are AAA+ ATPases that load sliding clamps onto DNA. We mapped the mutational sensitivity of the T4 bacteriophage sliding clamp and clamp loader by deep mutagenesis, and found that residues not involved in catalysis or binding display remarkable tolerance to mutation. An exception is a glutamine residue in the AAA+ module (Gln 118) that is not located at a catalytic or interfacial site. Gln 118 forms a hydrogen-bonded junction in a helical unit that we term the central coupler, because it connects the catalytic centers to DNA and the sliding clamp. A suppressor mutation indicates that hydrogen bonding in the junction is important, and molecular dynamics simulations reveal that it maintains rigidity in the central coupler. The glutamine-mediated junction is preserved in diverse AAA+ ATPases, suggesting that a connected network of hydrogen bonds that links ATP molecules is an essential aspect of allosteric communication in these proteins.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Agata Szuba et al.
    Research Article

    Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12 to 18 nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4 nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics.