1. Developmental Biology
Download icon

The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis

  1. Christian S M Helker
  2. Annika Schuermann
  3. Cathrin Pollmann
  4. Serene C Chng
  5. Friedemann Kiefer
  6. Bruno Reversade
  7. Wiebke Herzog  Is a corresponding author
  1. University of Muenster, Germany
  2. Max Planck Institute for Molecular Biomedicine, Germany
  3. A*STAR, Singapore
Short Report
  • Cited 49
  • Views 2,724
  • Annotations
Cite this article as: eLife 2015;4:e06726 doi: 10.7554/eLife.06726

Abstract

A key step in the de novo formation of the embryonic vasculature is the migration of endothelial precursors, the angioblasts, to the position of the future vessels. To form the first axial vessels, angioblasts migrate towards the midline and coalesce underneath the notochord. Vascular endothelial growth factor (Vegf) has been proposed to serve as a chemoattractant for the angioblasts and to regulate this medial migration. Here we challenge this model and instead demonstrate that angioblasts rely on their intrinsic expression of Apelin receptors (Aplr, APJ) for their migration to the midline. We further show that during this angioblast migration Apelin receptor signaling is mainly triggered by the recently discovered ligand Elabela (Ela). As neither of the ligands Ela or Apelin (Apln) nor their receptors have previously been implicated in regulating angioblast migration, we hereby provide a novel mechanism for regulating vasculogenesis, with direct relevance to physiological and pathological angiogenesis.

Article and author information

Author details

  1. Christian S M Helker

    n/a, University of Muenster, Muenster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Annika Schuermann

    n/a, University of Muenster, Muenster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Cathrin Pollmann

    n/a, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Serene C Chng

    Institute of Medical Biology, Human Genetics and Embryology Laboratory, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Friedemann Kiefer

    n/a, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Bruno Reversade

    Institute of Medical Biology, Human Genetics and Embryology Laboratory, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Wiebke Herzog

    n/a, University of Muenster, Muenster, Germany
    For correspondence
    wiebke.herzog@mpi-muenster.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were performed in strict accordance with the relevant laws and institutional guidelines the Max Planck Institute for Molecular Biomedicine, Muenster and the Institute of Medical Biology, Singapore. All protocols were approved by animal ethics committees of the state of North Rhine-Westfalia (Germany,# 39.32.7.1) and Singapore, respectively, and all efforts were made to minimize suffering.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Publication history

  1. Received: January 27, 2015
  2. Accepted: May 22, 2015
  3. Accepted Manuscript published: May 27, 2015 (version 1)
  4. Version of Record published: June 16, 2015 (version 2)

Copyright

© 2015, Helker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,724
    Page views
  • 689
    Downloads
  • 49
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Maria Danielle Sallee et al.
    Research Article

    Sustained polarity and adhesion of epithelial cells is essential for the protection of our organs and bodies, and this epithelial integrity emerges during organ development amidst numerous programmed morphogenetic assaults. Using the developing C. elegans intestine as an in vivo model, we investigated how epithelia maintain their integrity through cell division and elongation to build a functional tube. Live-imaging revealed that apical PAR complex proteins PAR-6/Par6 and PKC-3/aPkc remained apical during mitosis while apical microtubules and microtubule-organizing center (MTOC) proteins were transiently removed. Intestine-specific depletion of PAR-6, PKC-3, and the aPkc regulator CDC-42/Cdc42 caused persistent gaps in the apical MTOC as well as in other apical and junctional proteins after cell division and in non-dividing cells that elongated. Upon hatching, gaps coincided with luminal constrictions that blocked food, and larvae arrested and died. Thus, the apical PAR complex maintains apical and junctional continuity to construct a functional intestinal tube.

    1. Developmental Biology
    2. Neuroscience
    Shu-Min Chou et al.
    Research Article Updated

    In the postnatal brain, neurogenesis occurs only within a few regions, such as the hippocampal sub-granular zone (SGZ). Postnatal neurogenesis is tightly regulated by factors that balance stem cell renewal with differentiation, and it gives rise to neurons that participate in learning and memory formation. The Kv1.1 channel, a voltage-gated potassium channel, was previously shown to suppress postnatal neurogenesis in the SGZ in a cell-autonomous manner. In this study, we have clarified the physiological and molecular mechanisms underlying Kv1.1-dependent postnatal neurogenesis. First, we discovered that the membrane potential of neural progenitor cells is highly dynamic during development. We further established a multinomial logistic regression model for cell-type classification based on the biophysical characteristics and corresponding cell markers. We found that the loss of Kv1.1 channel activity causes significant depolarization of type 2b neural progenitor cells. This depolarization is associated with increased tropomyosin receptor kinase B (TrkB) signaling and proliferation of neural progenitor cells; suppressing TrkB signaling reduces the extent of postnatal neurogenesis. Thus, our study defines the role of the Kv1.1 potassium channel in regulating the proliferation of postnatal neural progenitor cells in mouse hippocampus.