Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence

  1. Kevin G Hicks
  2. Scott Delbecq
  3. Enea Sancho-Vaello
  4. Marie-Pierre Blanc
  5. Katja K Dove
  6. Lynne R Prost
  7. Margaret E Daley
  8. Kornelius Zeth
  9. Rachel E Klevit
  10. Samuel I Miller  Is a corresponding author
  1. University of Washington Medical School, United States
  2. Universidad del País Vasco/Euskal Herriko Unibertsitatea, Spain
  3. University of Wisconsin-Madison, United States
  4. University of San Diego, United States
  5. Max-Planck-Institut für Entwicklungsbiologie, Germany

Abstract

Salmonellae PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQW104C-A128C is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQW104C-A128C Salmonella enterica Typhimurium are virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

Article and author information

Author details

  1. Kevin G Hicks

    Department of Microbiology, University of Washington Medical School, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Scott Delbecq

    Department of Biochemistry, University of Washington Medical School, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Enea Sancho-Vaello

    Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bizkaia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Pierre Blanc

    Department of Microbiology, University of Washington Medical School, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katja K Dove

    Department of Biochemistry, University of Washington Medical School, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lynne R Prost

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Margaret E Daley

    Department of Chemistry and Biochemistry, University of San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kornelius Zeth

    Department of Protein Evolution, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Rachel E Klevit

    Department of Biochemistry, University of Washington Medical School, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Samuel I Miller

    Department of Microbiology, University of Washington Medical School, Seattle, United States
    For correspondence
    millersi@uw.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (2982-02) of the University of Washington.

Copyright

© 2015, Hicks et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin G Hicks
  2. Scott Delbecq
  3. Enea Sancho-Vaello
  4. Marie-Pierre Blanc
  5. Katja K Dove
  6. Lynne R Prost
  7. Margaret E Daley
  8. Kornelius Zeth
  9. Rachel E Klevit
  10. Samuel I Miller
(2015)
Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence
eLife 4:e06792.
https://doi.org/10.7554/eLife.06792

Share this article

https://doi.org/10.7554/eLife.06792

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.