Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence

  1. Kevin G Hicks
  2. Scott Delbecq
  3. Enea Sancho-Vaello
  4. Marie-Pierre Blanc
  5. Katja K Dove
  6. Lynne R Prost
  7. Margaret E Daley
  8. Kornelius Zeth
  9. Rachel E Klevit
  10. Samuel I Miller  Is a corresponding author
  1. University of Washington Medical School, United States
  2. Universidad del País Vasco/Euskal Herriko Unibertsitatea, Spain
  3. University of Wisconsin-Madison, United States
  4. University of San Diego, United States
  5. Max-Planck-Institut für Entwicklungsbiologie, Germany

Abstract

Salmonellae PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQW104C-A128C is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQW104C-A128C Salmonella enterica Typhimurium are virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

Article and author information

Author details

  1. Kevin G Hicks

    Department of Microbiology, University of Washington Medical School, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Scott Delbecq

    Department of Biochemistry, University of Washington Medical School, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Enea Sancho-Vaello

    Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bizkaia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Pierre Blanc

    Department of Microbiology, University of Washington Medical School, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katja K Dove

    Department of Biochemistry, University of Washington Medical School, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lynne R Prost

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Margaret E Daley

    Department of Chemistry and Biochemistry, University of San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kornelius Zeth

    Department of Protein Evolution, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Rachel E Klevit

    Department of Biochemistry, University of Washington Medical School, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Samuel I Miller

    Department of Microbiology, University of Washington Medical School, Seattle, United States
    For correspondence
    millersi@uw.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (2982-02) of the University of Washington.

Reviewing Editor

  1. Feng Shao, National Institute of Biological Sciences, China

Publication history

  1. Received: February 1, 2015
  2. Accepted: May 22, 2015
  3. Accepted Manuscript published: May 23, 2015 (version 1)
  4. Version of Record published: June 19, 2015 (version 2)

Copyright

© 2015, Hicks et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,620
    Page views
  • 553
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin G Hicks
  2. Scott Delbecq
  3. Enea Sancho-Vaello
  4. Marie-Pierre Blanc
  5. Katja K Dove
  6. Lynne R Prost
  7. Margaret E Daley
  8. Kornelius Zeth
  9. Rachel E Klevit
  10. Samuel I Miller
(2015)
Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence
eLife 4:e06792.
https://doi.org/10.7554/eLife.06792

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Abhinay Ramaprasad, Paul-Christian Burda ... Michael J Blackman
    Research Article Updated

    The malaria parasite Plasmodium falciparum synthesizes significant amounts of phospholipids to meet the demands of replication within red blood cells. De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway is essential, requiring choline that is primarily sourced from host serum lysophosphatidylcholine (lysoPC). LysoPC also acts as an environmental sensor to regulate parasite sexual differentiation. Despite these critical roles for host lysoPC, the enzyme(s) involved in its breakdown to free choline for PC synthesis are unknown. Here, we show that a parasite glycerophosphodiesterase (PfGDPD) is indispensable for blood stage parasite proliferation. Exogenous choline rescues growth of PfGDPD-null parasites, directly linking PfGDPD function to choline incorporation. Genetic ablation of PfGDPD reduces choline uptake from lysoPC, resulting in depletion of several PC species in the parasite, whilst purified PfGDPD releases choline from glycerophosphocholine in vitro. Our results identify PfGDPD as a choline-releasing glycerophosphodiesterase that mediates a critical step in PC biosynthesis and parasite survival.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jiemin Shen, Azaan Saalim Wilbon ... Yaping Pan
    Research Article Updated

    Ferroportin (Fpn) is a transporter that releases ferrous ion (Fe2+) from cells and is important for homeostasis of iron in circulation. Export of one Fe2+ by Fpn is coupled to import of two H+ to maintain charge balance. Here, we show that human Fpn (HsFpn) binds to and mediates Ca2+ transport. We determine the structure of Ca2+-bound HsFpn and identify a single Ca2+ binding site distinct from the Fe2+ binding sites. Further studies validate the Ca2+ binding site and show that Ca2+ transport is not coupled to transport of another ion. In addition, Ca2+ transport is significantly inhibited in the presence of Fe2+ but not vice versa. Function of Fpn as a Ca2+ uniporter may allow regulation of iron homeostasis by Ca2+.