The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold

  1. Zhengpeng Wan
  2. Xiangjun Chen
  3. Haodong Chen
  4. Qinghua Ji
  5. Yingjia Chen
  6. Jing Wang
  7. Yiyun Cao
  8. Fei Wang
  9. Jizhong Lou
  10. Zhuo Tang
  11. Wanli Liu  Is a corresponding author
  1. Tsinghua University, China
  2. Chinese Academy of Science, China
  3. Chinese Academy of Sciences, China

Abstract

B lymphocytes use B cell receptors (BCRs) to sense the physical features of the antigens. However, the sensitivity and threshold for the activation of BCRs resulting from the stimulation by mechanical forces are unknown. Here we addressed this question using a double-stranded DNA based tension gauge tether system serving as a predefined mechanical force gauge ranging from 12 to 56 pN. We observed that IgM-BCR activation is dependent on mechanical forces and exhibits a multi-threshold effect. In contrast, the activation of isotype-switched IgG- or IgE-BCR only requires a low threshold of less than 12 pN, providing an explanation for their rapid activation in response to antigen stimulation. Mechanistically, we found that the cytoplasmic tail of the IgG-BCR heavy chain is both required and sufficient to account for the low mechanical force threshold. These results defined the mechanical force sensitivity and threshold that are required to activate different isotyped BCRs.

Article and author information

Author details

  1. Zhengpeng Wan

    MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiangjun Chen

    MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Haodong Chen

    Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Qinghua Ji

    Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yingjia Chen

    MOE Key Laboratory of Protein Sciences, School of Life Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jing Wang

    MOE Key Laboratory of Protein Sciences, School of Life Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yiyun Cao

    MOE Key Laboratory of Protein Sciences, School of Life Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Fei Wang

    Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Jizhong Lou

    Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhuo Tang

    Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Wanli Liu

    MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    For correspondence
    liuwanli@biomed.tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Wan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,976
    views
  • 769
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhengpeng Wan
  2. Xiangjun Chen
  3. Haodong Chen
  4. Qinghua Ji
  5. Yingjia Chen
  6. Jing Wang
  7. Yiyun Cao
  8. Fei Wang
  9. Jizhong Lou
  10. Zhuo Tang
  11. Wanli Liu
(2015)
The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold
eLife 4:e06925.
https://doi.org/10.7554/eLife.06925

Share this article

https://doi.org/10.7554/eLife.06925

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Daniel Spari, Annina Schmid ... Guido Beldi
    Research Article

    Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.

    1. Immunology and Inflammation
    Chan-Su Park, Jian Guan ... Scheherazade Sadegh-Nasseri
    Research Article

    The fate of developing T cells is determined by the strength of T cell receptor (TCR) signal they receive in the thymus. This process is finely regulated through the tuning of positive and negative regulators in thymocytes. The Family with sequence similarity 49 member B (Fam49b) protein is a newly discovered negative regulator of TCR signaling that has been shown to suppress Rac-1 activity in vitro in cultured T cell lines. However, the contribution of Fam49b to the thymic development of T cells is unknown. To investigate this important issue, we generated a novel mouse line deficient in Fam49b (Fam49b-KO). We observed that Fam49b-KO double positive (DP) thymocytes underwent excessive negative selection, whereas the positive selection stage was unaffected. Fam49b deficiency impaired the survival of single positive thymocytes and peripheral T cells. This altered development process resulted in significant reductions in CD4 and CD8 single-positive thymocytes as well as peripheral T cells. Interestingly, a large proportion of the TCRγδ+ and CD8αα+TCRαβ+ gut intraepithelial T lymphocytes were absent in Fam49b-KO mice. Our results demonstrate that Fam49b dampens thymocytes TCR signaling in order to escape negative selection during development, uncovering the function of Fam49b as a critical regulator of the selection process to ensure normal thymocyte development and peripheral T cells survival.