Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection
Abstract
Foot-and-mouth disease virus (FMDV) is an economically devastating viral disease leading to a substantial loss to the swine industry worldwide. A novel alternative strategy is to develop pigs that are genetically resistant to infection. Here, we produce transgenic (TG) pigs that constitutively expressed FMDV-specific siRNA derived from small hairpin RNA (shRNA). In vitro challenge of TG fibroblasts showed the shRNA suppressed viral growth. TG and non-transgenic (Non-TG) pigs were challenged by intramuscular injection with 100 LD50 of FMDV. High fever, severe clinical sign of FMD and typical histopathological changes were observed in all of the Non-TG pigs but in none of the high-siRNA pigs. Our results show that transgenic shRNA can provide a viable tool for producing animals with enhanced resistance to FMDV.
Article and author information
Author details
Ethics
Animal experimentation: All experiments involving animals were conducted under the protocol approved by the Animal Care and Use Committee of Shihezi University (SU-ACUC-12031).
Copyright
© 2015, Hu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,142
- views
-
- 510
- downloads
-
- 33
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
- Microbiology and Infectious Disease
Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.