1. Immunology and Inflammation
Download icon

Antigen presentation kinetics control T cell/dendritic cell interactions and Tfh generation in vivo

  1. Robert A Benson
  2. Megan KL MacLeod
  3. Benjamin G Hale
  4. Agapitos Patakas
  5. Paul Garside
  6. James M Brewer  Is a corresponding author
  1. University of Glasgow, United Kingdom
  2. University of Zurich, Switzerland
Research Article
  • Cited 38
  • Views 3,767
  • Annotations
Cite this article as: eLife 2015;4:e06994 doi: 10.7554/eLife.06994

Abstract

The production of high affinity, class switched antibodies produced by B cells hinges on the effective differentiation of T follicular helper (Tfh) cells. Here we define conditions specifically enhancing Tfh differentiation and providing protection in a model of influenza infection. Tfh responses were associated with prolonged antigen presentation by Dendritic cells (DCs), which maintained T cell/DC interactions into stage 3 (>72 hours) of activation. Blocking stage 3 interactions ablated Tfh generation, demonstrating a causal link between T cell-DC behaviour and functional outcomes. The current data therefore explain how duration of antigen presentation affects the dynamics of T cell-DC interactions and consequently determine Tfh cell differentiation in the developing immune response.

Article and author information

Author details

  1. Robert A Benson

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Megan KL MacLeod

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin G Hale

    Institute of Medical Virology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Agapitos Patakas

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Paul Garside

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. James M Brewer

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Robert.Benson@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animals were specified pathogen free and maintained under standard animal house conditions at the University of Glasgow in accordance with local and UK Home Office Regulations.

Reviewing Editor

  1. Shimon Sakaguchi, Osaka University, Japan

Publication history

  1. Received: February 13, 2015
  2. Accepted: August 8, 2015
  3. Accepted Manuscript published: August 10, 2015 (version 1)
  4. Version of Record published: September 3, 2015 (version 2)

Copyright

© 2015, Benson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,767
    Page views
  • 762
    Downloads
  • 38
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Elliott Swanson et al.
    Tools and Resources

    Single-cell measurements of cellular characteristics have been instrumental in understanding the heterogeneous pathways that drive differentiation, cellular responses to signals, and human disease. Recent advances have allowed paired capture of protein abundance and transcriptomic state, but a lack of epigenetic information in these assays has left a missing link to gene regulation. Using the heterogeneous mixture of cells in human peripheral blood as a test case, we developed a novel scATAC-seq workflow that increases signal-to-noise and allows paired measurement of cell surface markers and chromatin accessibility: integrated cellular indexing of chromatin landscape and epitopes, called ICICLE-seq. We extended this approach using a droplet-based multiomics platform to develop a trimodal assay that simultaneously measures transcriptomics (scRNA-seq), epitopes, and chromatin accessibility (scATAC-seq) from thousands of single cells, which we term TEA-seq. Together, these multimodal single-cell assays provide a novel toolkit to identify type-specific gene regulation and expression grounded in phenotypically defined cell types.

    1. Immunology and Inflammation
    2. Medicine
    Juana Serrano-Lopez et al.
    Research Article

    Innate immune cellular effectors are actively consumed during systemic inflammation but the systemic traffic and the mechanisms that support their replenishment remain unknown. Here we demonstrate that acute systemic inflammation induces the emergent activation of a previously unrecognized system of rapid migration of granulocyte-macrophage progenitors and committed macrophage-dendritic progenitors, but not other progenitors or stem cells, from bone marrow (BM) to regional lymphatic capillaries. The progenitor traffic to the systemic lymphatic circulation is mediated by Ccl19/Ccr7 and is NFkB independent, Traf6/IkB-kinase/SNAP23 activation dependent, and is responsible for the secretion of pre-stored Ccl19 by a subpopulation of CD205+/CD172a+ conventional dendritic cells type 2 (cDC2) and upregulation of BM myeloid progenitor Ccr7 signaling. Mature myeloid Traf6 signaling is anti-inflammatory and necessary for lymph node (LN) myeloid cell development. This report unveils the existence and the mechanistic basis of a very early direct traffic of myeloid progenitors from BM to lymphatics during inflammation.