MicroRNA-203 represses selection and expansion of oncogenic Hras transformed tumor initiating cells

  1. Kent Riemondy
  2. Xiao-jing Wang
  3. Enrique C Torchia
  4. Dennis R Roop
  5. Rui Yi  Is a corresponding author
  1. University of Colorado, Boulder, United States
  2. University of Colorado Denver Anschutz Medical Campus, United States

Abstract

In many mouse models of skin cancer, only a few tumors typically form even though many cells competent for tumorigenesis receive the same oncogenic stimuli. These observations suggest an active selection process for tumor-initiating cells. Here we use quantitative mRNA- and miR-Seq to determine the impact of HrasG12V on the transcriptome of keratinocytes. We discover that microRNA-203 is downregulated by HrasG12V. Using a knockout mouse model, we demonstrate that loss of microRNA-203 promotes selection and expansion of tumor-initiating cells. Conversely, restoration of microRNA-203 using an inducible model potently inhibits proliferation of these cells. We comprehensively identify microRNA-203 targets required for Hras-initiated tumorigenesis. These targets include critical regulators of the Ras pathway and essential genes required for cell division. This study establishes a role for the loss of microRNA-203 in promoting selection and expansion of Hras mutated cells and identifies a mechanism through which microRNA-203 antagonizes Hras-mediated tumorigenesis.

Article and author information

Author details

  1. Kent Riemondy

    Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiao-jing Wang

    Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Enrique C Torchia

    Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dennis R Roop

    Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rui Yi

    Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    For correspondence
    yir@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Chi Van Dang, University of Pennsylvania, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1408.01) of the University of Colorado, Boulder. Every effort was made to minimize suffering.

Version history

  1. Received: February 13, 2015
  2. Accepted: July 22, 2015
  3. Accepted Manuscript published: July 23, 2015 (version 1)
  4. Version of Record published: August 14, 2015 (version 2)

Copyright

© 2015, Riemondy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,788
    views
  • 318
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kent Riemondy
  2. Xiao-jing Wang
  3. Enrique C Torchia
  4. Dennis R Roop
  5. Rui Yi
(2015)
MicroRNA-203 represses selection and expansion of oncogenic Hras transformed tumor initiating cells
eLife 4:e07004.
https://doi.org/10.7554/eLife.07004

Share this article

https://doi.org/10.7554/eLife.07004

Further reading

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.