Selections that isolate recombinant mitochondrial genomes in animals

  1. Hansong Ma
  2. Patrick H O'Farrell  Is a corresponding author
  1. University of California, San Francisco, United States

Abstract

Homologous recombination is widespread and catalyzes evolution. Nonetheless, its existence in animal mitochondrial DNA is questioned. We designed selections for recombination between co-resident mitochondrial genomes in various heteroplasmic Drosophila lines. In four experimental settings, recombinant genomes became the sole or dominant genome in the progeny. Thus, selection uncovers occurrence of homologous recombination in Drosophila mtDNA and documents its functional benefit. Double-strand breaks enhanced recombination in the germ line and revealed somatic recombination. When the recombination partner was a diverged D. melanogaster genome or a genome from a different species such as D. yakuba, sequencing revealed long continuous stretches of exchange. In addition, the distribution of sequence polymorphisms in recombinants allowed us to map a selected trait to a particular region in the Drosophila mitochondrial genome. Thus, recombination can be harnessed to dissect function and evolution of mitochondrial genome.

Article and author information

Author details

  1. Hansong Ma

    Department of Biochemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrick H O'Farrell

    Department of Biochemistry, University of California, San Francisco, San Francisco, United States
    For correspondence
    ofarrell@cgl.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jodi Nunnari, University of California, Davis, United States

Version history

  1. Received: February 28, 2015
  2. Accepted: August 1, 2015
  3. Accepted Manuscript published: August 3, 2015 (version 1)
  4. Version of Record published: September 28, 2015 (version 2)

Copyright

© 2015, Ma & O'Farrell

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,667
    views
  • 602
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hansong Ma
  2. Patrick H O'Farrell
(2015)
Selections that isolate recombinant mitochondrial genomes in animals
eLife 4:e07247.
https://doi.org/10.7554/eLife.07247

Share this article

https://doi.org/10.7554/eLife.07247

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.