1. Plant Biology
Download icon

Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100

  1. Shouan Liu
  2. Barbara Kracher
  3. Joerg Ziegler
  4. Rainer P Birkenbihl
  5. Imre E Somssich  Is a corresponding author
  1. Max Planck Institute for Plant Breeding Research, Germany
  2. Leibnitz Institute of Plant Biochemistry, Germany
Research Article
  • Cited 107
  • Views 5,797
  • Annotations
Cite this article as: eLife 2015;4:e07295 doi: 10.7554/eLife.07295

Abstract

The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 h post inoculation. Comparative analyses revealed that WRKY33 possess dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.

Article and author information

Author details

  1. Shouan Liu

    Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Barbara Kracher

    Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Joerg Ziegler

    Department of Molecular Signal Processing,, Leibnitz Institute of Plant Biochemistry, Halle, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Rainer P Birkenbihl

    Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Imre E Somssich

    Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
    For correspondence
    somssich@mpipz.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jean T Greenberg, University of Chicago, United States

Publication history

  1. Received: March 3, 2015
  2. Accepted: June 13, 2015
  3. Accepted Manuscript published: June 15, 2015 (version 1)
  4. Version of Record published: July 1, 2015 (version 2)

Copyright

© 2015, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,797
    Page views
  • 1,510
    Downloads
  • 107
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Plant Biology
    Sonia Accossato et al.
    Short Report Updated

    Chloroplast biogenesis describes the transition of non-photosynthetic proplastids to photosynthetically active chloroplasts in the cells of germinating seeds. Chloroplast biogenesis requires the import of thousands of nuclear-encoded preproteins by essential import receptor TOC159. We demonstrate that the small ubiquitin-related modifier (SUMO) pathway crosstalks with the ubiquitin–proteasome pathway to affect TOC159 stability during early plant development. We identified a SUMO3-interacting motif (SIM) in the TOC159 GTPase domain and a SUMO3 covalent SUMOylation site in the membrane domain. A single K to R substitution (K1370R) in the M-domain disables SUMOylation. Compared to wild-type TOC159, TOC159K1370R was destabilized under UPS-inducing stress conditions. However, TOC159K1370R recovered to same protein level as wild-type TOC159 in the presence of a proteasome inhibitor. Thus, SUMOylation partially stabilizes TOC159 against UPS-dependent degradation under stress conditions. Our data contribute to the evolving model of tightly controlled proteostasis of the TOC159 import receptor during proplastid to chloroplast transition.

    1. Cell Biology
    2. Plant Biology
    Samuel James Watson et al.
    Research Article Updated

    The chloroplast proteome contains thousands of different proteins that are encoded by the nuclear genome. These proteins are imported into the chloroplast via the action of the TOC translocase and associated downstream systems. Our recent work has revealed that the stability of the TOC complex is dynamically regulated by the ubiquitin-dependent chloroplast-associated protein degradation pathway. Here, we demonstrate that the TOC complex is also regulated by the small ubiquitin-like modifier (SUMO) system. Arabidopsis mutants representing almost the entire SUMO conjugation pathway can partially suppress the phenotype of ppi1, a pale-yellow mutant lacking the Toc33 protein. This suppression is linked to increased abundance of TOC proteins and improvements in chloroplast development. Moreover, data from molecular and biochemical experiments support a model in which the SUMO system directly regulates TOC protein stability. Thus, we have identified a regulatory link between the SUMO system and the chloroplast protein import machinery.