Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100

  1. Shouan Liu
  2. Barbara Kracher
  3. Joerg Ziegler
  4. Rainer P Birkenbihl
  5. Imre E Somssich  Is a corresponding author
  1. Max Planck Institute for Plant Breeding Research, Germany
  2. Leibnitz Institute of Plant Biochemistry, Germany

Abstract

The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 h post inoculation. Comparative analyses revealed that WRKY33 possess dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.

Article and author information

Author details

  1. Shouan Liu

    Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Barbara Kracher

    Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Joerg Ziegler

    Department of Molecular Signal Processing,, Leibnitz Institute of Plant Biochemistry, Halle, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Rainer P Birkenbihl

    Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Imre E Somssich

    Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
    For correspondence
    somssich@mpipz.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,152
    views
  • 1,789
    downloads
  • 202
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shouan Liu
  2. Barbara Kracher
  3. Joerg Ziegler
  4. Rainer P Birkenbihl
  5. Imre E Somssich
(2015)
Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100
eLife 4:e07295.
https://doi.org/10.7554/eLife.07295

Share this article

https://doi.org/10.7554/eLife.07295

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Nyasha Charura, Ernesto Llamas ... Alga Zuccaro
    Research Article

    Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.

    1. Cell Biology
    2. Plant Biology
    Masanori Izumi, Sakuya Nakamura ... Shinya Hagihara
    Research Article

    Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.