A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis

  1. Ponni Rajagopal
  2. Eric Tse
  3. Andrew J Borst
  4. Scott P Delbecq
  5. Lei Shi
  6. Daniel P Southworth
  7. Rachel E Klevit  Is a corresponding author
  1. University of Washington, United Kingdom
  2. University of Michigan, United States
  3. University of Washington, United States

Abstract

Small heat shock proteins (sHSPs) are essential 'holdase' chaperones that form large assemblies and respond dynamically to pH and temperature stresses to protect client proteins from aggregation. While the alpha-crystallin domain (ACD) dimer of sHSPs is the universal building block, how the ACD transmits structural changes in response to stress to promote holdase activity is unknown. We found that the dimer interface of HSPB5 is destabilized over physiological pHs and a conserved histidine (His-104) controls interface stability and oligomer structure in response to acidosis. Destabilization by pH or His-104 mutation shifts the ACD from dimer to monomer but also results in a large expansion of HSPB5 oligomer states. Remarkably, His-104 mutant-destabilized oligomers are efficient holdases that reorganize into structurally distinct client-bound complexes. Our data support a model for sHSP function wherein cell stress triggers small perturbations that alter the ACD building blocks to unleash a cryptic mode of chaperone action.

Article and author information

Author details

  1. Ponni Rajagopal

    Department of Biochemistry, University of Washington, Seattle, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Eric Tse

    Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew J Borst

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Scott P Delbecq

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lei Shi

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel P Southworth

    Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Rachel E Klevit

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    klevit@u.washington.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Rajagopal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,122
    views
  • 516
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ponni Rajagopal
  2. Eric Tse
  3. Andrew J Borst
  4. Scott P Delbecq
  5. Lei Shi
  6. Daniel P Southworth
  7. Rachel E Klevit
(2015)
A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis
eLife 4:e07304.
https://doi.org/10.7554/eLife.07304

Share this article

https://doi.org/10.7554/eLife.07304