Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm

  1. Carmen Andrikou
  2. Chih-Yu Pai
  3. Yi-Hsien Su
  4. Maria Ina Arnone  Is a corresponding author
  1. University of Bergen, Norway
  2. Academia Sinica, Taiwan
  3. Stazione Zoologica Anton Dohrn, Italy

Abstract

Evolutionary origin of muscle is a central question when discussing mesoderm evolution. Developmental mechanisms underlying somatic muscle development have mostly been studied in vertebrates and fly where multiple signals and hierarchic genetic regulatory cascades selectively specify myoblasts from a pool of naïve mesodermal progenitors. However, due to the increased organismic complexity and distant phylogenetic position of the two systems, a general mechanistic understanding of myogenesis is still lacking. Here, we propose a gene regulatory network (GRN) model that promotes myogenesis in the sea urchin embryo, an early branching deuterostome. A FGF signalling and four Forkhead transcription factors consist the central part of our model and appear to orchestrate the myogenic process. The topological properties of the network reveal dense gene interwiring and a multilevel transcriptional regulation of conserved and novel myogenic genes. Finally, the comparison of the myogenic network architecture among different animal groups highlights the evolutionary plasticity of developmental GRNs.

Article and author information

Author details

  1. Carmen Andrikou

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  2. Chih-Yu Pai

    Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi-Hsien Su

    Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Ina Arnone

    Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy
    For correspondence
    miarnone@szn.it
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Margaret Buckingham, Institut Pasteur, France

Version history

  1. Received: March 5, 2015
  2. Accepted: July 25, 2015
  3. Accepted Manuscript published: July 28, 2015 (version 1)
  4. Version of Record published: August 26, 2015 (version 2)

Copyright

© 2015, Andrikou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,832
    Page views
  • 332
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carmen Andrikou
  2. Chih-Yu Pai
  3. Yi-Hsien Su
  4. Maria Ina Arnone
(2015)
Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm
eLife 4:e07343.
https://doi.org/10.7554/eLife.07343

Further reading

    1. Developmental Biology
    2. Neuroscience
    Igor Y Iskusnykh, Nikolai Fattakhov ... Victor V Chizhikov
    Research Article

    Development of the nervous system depends on signaling centers – specialized cellular populations that produce secreted molecules to regulate neurogenesis in the neighboring neuroepithelium. In some cases, signaling center cells also differentiate to produce key types of neurons. The formation of a signaling center involves its induction, the maintenance of expression of its secreted molecules, and cell differentiation and migration events. How these distinct processes are coordinated during signaling center development remains unknown. By performing studies in mice, we show that Lmx1a acts as a master regulator to orchestrate the formation and function of the cortical hem (CH), a critical signaling center that controls hippocampus development. Lmx1a co-regulates CH induction, its Wnt signaling, and the differentiation and migration of CH-derived Cajal–Retzius neurons. Combining RNAseq, genetic, and rescue experiments, we identified major downstream genes that mediate distinct Lmx1a-dependent processes. Our work revealed that signaling centers in the mammalian brain employ master regulatory genes and established a framework for analyzing signaling center development.

    1. Developmental Biology
    2. Evolutionary Biology
    Salvatore D'Aniello, Stephanie Bertrand, Hector Escriva
    Feature Article

    Cephalochordates and tunicates represent the only two groups of invertebrate chordates, and extant cephalochordates – commonly known as amphioxus or lancelets – are considered the best proxy for the chordate ancestor, from which they split around 520 million years ago. Amphioxus has been an important organism in the fields of zoology and embryology since the 18th century, and the morphological and genomic simplicity of cephalochordates (compared to vertebrates) makes amphioxus an attractive model for studying chordate biology at the cellular and molecular levels. Here we describe the life cycle of amphioxus, and discuss the natural histories and habitats of the different species of amphioxus. We also describe their use as laboratory animal models, and discuss the techniques that have been developed to study different aspects of amphioxus.