Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm

  1. Carmen Andrikou
  2. Chih-Yu Pai
  3. Yi-Hsien Su
  4. Maria Ina Arnone  Is a corresponding author
  1. University of Bergen, Norway
  2. Academia Sinica, Taiwan
  3. Stazione Zoologica Anton Dohrn, Italy

Abstract

Evolutionary origin of muscle is a central question when discussing mesoderm evolution. Developmental mechanisms underlying somatic muscle development have mostly been studied in vertebrates and fly where multiple signals and hierarchic genetic regulatory cascades selectively specify myoblasts from a pool of naïve mesodermal progenitors. However, due to the increased organismic complexity and distant phylogenetic position of the two systems, a general mechanistic understanding of myogenesis is still lacking. Here, we propose a gene regulatory network (GRN) model that promotes myogenesis in the sea urchin embryo, an early branching deuterostome. A FGF signalling and four Forkhead transcription factors consist the central part of our model and appear to orchestrate the myogenic process. The topological properties of the network reveal dense gene interwiring and a multilevel transcriptional regulation of conserved and novel myogenic genes. Finally, the comparison of the myogenic network architecture among different animal groups highlights the evolutionary plasticity of developmental GRNs.

Article and author information

Author details

  1. Carmen Andrikou

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  2. Chih-Yu Pai

    Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi-Hsien Su

    Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Ina Arnone

    Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy
    For correspondence
    miarnone@szn.it
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Margaret Buckingham, Institut Pasteur, France

Version history

  1. Received: March 5, 2015
  2. Accepted: July 25, 2015
  3. Accepted Manuscript published: July 28, 2015 (version 1)
  4. Version of Record published: August 26, 2015 (version 2)

Copyright

© 2015, Andrikou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,852
    Page views
  • 337
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carmen Andrikou
  2. Chih-Yu Pai
  3. Yi-Hsien Su
  4. Maria Ina Arnone
(2015)
Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm
eLife 4:e07343.
https://doi.org/10.7554/eLife.07343

Share this article

https://doi.org/10.7554/eLife.07343

Further reading

    1. Developmental Biology
    2. Neuroscience
    Athina Keramidioti, Sandra Schneid ... Charles N David
    Research Article

    The Hydra nervous system is the paradigm of a ‘simple nerve net’. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.

    1. Developmental Biology
    Marta Grzonka, Hisham Bazzi
    Research Article

    SAS‑6 (SASS6) is essential for centriole formation in human cells and other organisms but its function in mouse is unclear. Here, we report that Sass6‑mutant mouse embryos lack centrioles, activate the mitotic surveillance cell death pathway and arrest at mid‑gestation. In contrast, SAS‑6 is not required for centriole formation in mouse embryonic stem cells (mESCs), but is essential to maintain centriole architecture. Of note, centrioles appeared after just one day of culture of Sass6‑mutant blastocysts, from which mESCs are derived. Conversely, the number of cells with centrosomes is drastically decreased upon the exit from a mESC pluripotent state. At the mechanistic level, the activity of the master kinase in centriole formation, PLK4, associated with increased centriolar and centrosomal protein levels, endow mESCs with the robustness in using SAS‑6‑independent centriole-duplication pathways. Collectively, our data suggest a differential requirement for mouse SAS‑6 in centriole formation or integrity depending on PLK4 and centrosome composition.