1. Cell Biology
  2. Neuroscience
Download icon

Predator-induced changes in Drosophila behavior and germline physiology are socially communicated

  1. Balint Z Kacsoh
  2. Julianna Bozler
  3. Mani Ramaswami
  4. Giovanni Bosco  Is a corresponding author
  1. Geisel School of Medicine at Dartmouth, United States
  2. Trinity College Dublin, Ireland
Research Article
  • Cited 29
  • Views 4,750
  • Annotations
Cite this article as: eLife 2015;4:e07423 doi: 10.7554/eLife.07423

Abstract

Behavioral adaptation to environmental threats and subsequent social transmission of adaptive behavior has evolutionary implications. In Drosophila, exposure to parasitoid wasps leads to a sharp decline in oviposition. We show that exposure to predator elicits both an acute and learned oviposition depression, mediated through the visual system. However, long-term persistence of oviposition depression after predator removal requires neuronal signaling functions, a functional mushroom body, and neurally driven apoptosis of oocytes through effector caspases. Strikingly, wasp-exposed flies (teachers) can transmit egg-retention behavior and trigger ovarian apoptosis in naïve, unexposed flies (students). Acquisition and behavioral execution of this socially learned behavior by naïve flies requires all of the factors needed for primary learning. The ability to teach does not require ovarian apoptosis. This work provides new insight into genetic and physiological mechanisms that underlie an ecologically relevant form of learning and mechanisms for its social transmission.

Article and author information

Author details

  1. Balint Z Kacsoh

    Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    No competing interests declared.
  2. Julianna Bozler

    Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    No competing interests declared.
  3. Mani Ramaswami

    Smurfit Institute of Genetics, Department of Zoology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    Mani Ramaswami, Reviewing editor, eLife.
  4. Giovanni Bosco

    Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, United States
    For correspondence
    giovanni.bosco@dartmouth.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Publication history

  1. Received: March 16, 2015
  2. Accepted: May 13, 2015
  3. Accepted Manuscript published: May 13, 2015 (version 1)
  4. Accepted Manuscript updated: May 15, 2015 (version 2)
  5. Version of Record published: June 8, 2015 (version 3)

Copyright

© 2015, Kacsoh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,750
    Page views
  • 965
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Hongyan Hao et al.
    Research Article

    KASH proteins in the outer nuclear membrane comprise the cytoplasmic half of LINC complexes that connect nuclei to the cytoskeleton. Caenorhabditis elegans ANC-1, an ortholog of Nesprin-1/2, contains actin-binding and KASH domains at opposite ends of a long spectrin-like region. Deletion of either the KASH or calponin homology (CH) domains does not completely disrupt nuclear positioning, suggesting neither KASH nor CH domains are essential. Deletions in the spectrin-like region of ANC-1 led to significant defects, but only recapitulated the null phenotype in combination with mutations in the trans-membrane span. In anc-1 mutants, the ER, mitochondria, and lipid droplets were unanchored, moving throughout the cytoplasm. The data presented here support a cytoplasmic integrity model where ANC-1 localizes to the ER membrane and extends into the cytoplasm to position nuclei, ER, mitochondria, and likely other organelles in place.

    1. Cell Biology
    2. Physics of Living Systems
    Manuel Giménez-Andrés et al.
    Research Article

    Numerous proteins target lipid droplets (LDs) through amphipathic helices (AHs). It is generally assumed that AHs insert bulky hydrophobic residues in packing defects at the LD surface. However, this model does not explain the targeting of perilipins, the most abundant and specific amphipathic proteins of LDs, which are weakly hydrophobic. A striking example is Plin4, whose gigantic and repetitive AH lacks bulky hydrophobic residues. Using a range of complementary approaches, we show that Plin4 forms a remarkably immobile and stable protein layer at the surface of cellular or in vitro generated oil droplets, and decreases LD size. Plin4 AH stability on LDs is exquisitely sensitive to the nature and distribution of its polar residues. These results suggest that Plin4 forms stable arrangements of adjacent AHs via polar/electrostatic interactions, reminiscent of the organization of apolipoproteins in lipoprotein particles, thus pointing to a general mechanism of AH stabilization via lateral interactions.