The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis

  1. Jie Gao
  2. Shannon M Buckley
  3. Luisa Cimmino
  4. Maria Guillamot
  5. Alexandros Strikoudis
  6. Yong Cang
  7. Stephen P Goff
  8. Iannis Aifantis  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Sanford-Burnham Medical Research Institute, United States
  3. Howard Hughes Medical Institute, Columbia University, United States

Abstract

Little is known on post-transcriptional regulation of stem cell maintenance and differentiation. Here we characterize the role of Ddb1, a component of the CUL4-DDB1 ligase complex. Ddb1 is highly expressed in hematopoietic stem cells and its deletion leads to abrogation of hematopoiesis, targeting specifically transiently amplifying progenitor subsets. Ddb1 deletion in non-dividing lymphocytes had no discernible phenotypes. Ddb1 silencing activated the p53 pathway and lead to apoptosis. The abrogation of hematopoietic progenitor cells can be partially rescued by simultaneous deletion of p53. Interestingly, depletion of DDB1 in embryonic stem cell (ESC) does not affect survival or cell cycle progression but leads to loss of pluripotency, suggesting distinct roles of DDB1 in adult and embryonic stem cells. Mass-spectrometry revealed distinct interactions between DDB1 and DCAFs, the substrate-recognizing components of the CUL4 complex between cell types. Our studies identify the CUL4-DDB1 complex as a novel post-translational regulator of stem maintenance and differentiation.

Article and author information

Author details

  1. Jie Gao

    Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  2. Shannon M Buckley

    Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Luisa Cimmino

    Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  4. Maria Guillamot

    Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  5. Alexandros Strikoudis

    Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  6. Yong Cang

    Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Stephen P Goff

    Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States
    Competing interests
    Stephen P Goff, Reviewing editor, eLife.
  8. Iannis Aifantis

    Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, United States
    For correspondence
    iannis.aifantis@nyumc.org
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: All animal experiments were done in accordance to the guidelines of the NYU School of Medicine, and approved by the institutional animal care and use committee (IACUC) protocol (#130410-03).

Copyright

© 2015, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,097
    views
  • 830
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jie Gao
  2. Shannon M Buckley
  3. Luisa Cimmino
  4. Maria Guillamot
  5. Alexandros Strikoudis
  6. Yong Cang
  7. Stephen P Goff
  8. Iannis Aifantis
(2015)
The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis
eLife 4:e07539.
https://doi.org/10.7554/eLife.07539

Share this article

https://doi.org/10.7554/eLife.07539

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.