1. Computational and Systems Biology
Download icon

Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes

  1. Juliane Liepe
  2. Hermann-Georg Holzhütter
  3. Elena Bellavista
  4. Peter M Kloetzel
  5. Michael PH Stumpf  Is a corresponding author
  6. Michele Mishto
  1. Imperial College London, United Kingdom
  2. Charité - Universitätsmedizin Berlin, Germany
  3. University of Bologna, Italy
  4. Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, United Kingdom
Research Article
  • Cited 27
  • Views 1,343
  • Annotations
Cite this article as: eLife 2015;4:e07545 doi: 10.7554/eLife.07545

Abstract

Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage.

Article and author information

Author details

  1. Juliane Liepe

    Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Hermann-Georg Holzhütter

    Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Elena Bellavista

    Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter M Kloetzel

    Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael PH Stumpf

    Imperial College London, Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, London, United Kingdom
    For correspondence
    m.stumpf@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Mishto

    Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. John Kuriyan, Howard Hughes Medical Institute, University of California, Berkeley, United States

Publication history

  1. Received: March 17, 2015
  2. Accepted: September 18, 2015
  3. Accepted Manuscript published: September 22, 2015 (version 1)
  4. Version of Record published: October 20, 2015 (version 2)

Copyright

© 2015, Liepe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,343
    Page views
  • 351
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Shivesh Chaudhary et al.
    Research Article Updated

    Although identifying cell names in dense image stacks is critical in analyzing functional whole-brain data enabling comparison across experiments, unbiased identification is very difficult, and relies heavily on researchers’ experiences. Here, we present a probabilistic-graphical-model framework, CRF_ID, based on Conditional Random Fields, for unbiased and automated cell identification. CRF_ID focuses on maximizing intrinsic similarity between shapes. Compared to existing methods, CRF_ID achieves higher accuracy on simulated and ground-truth experimental datasets, and better robustness against challenging noise conditions common in experimental data. CRF_ID can further boost accuracy by building atlases from annotated data in highly computationally efficient manner, and by easily adding new features (e.g. from new strains). We demonstrate cell annotation in Caenorhabditis elegans images across strains, animal orientations, and tasks including gene-expression localization, multi-cellular and whole-brain functional imaging experiments. Together, these successes demonstrate that unbiased cell annotation can facilitate biological discovery, and this approach may be valuable to annotation tasks for other systems.

    1. Cell Biology
    2. Computational and Systems Biology
    Ryan Conrad, Kedar Narayan
    Tools and Resources

    Automated segmentation of cellular electron microscopy (EM) datasets remains a challenge. Supervised deep learning (DL) methods that rely on region-of-interest (ROI) annotations yield models that fail to generalize to unrelated datasets. Newer unsupervised DL algorithms require relevant pre-training images, however, pre-training on currently available EM datasets is computationally expensive and shows little value for unseen biological contexts, as these datasets are large and homogeneous. To address this issue, we present CEM500K, a nimble 25 GB dataset of 0.5 × 106 unique 2D cellular EM images curated from nearly 600 three-dimensional (3D) and 10,000 two-dimensional (2D) images from >100 unrelated imaging projects. We show that models pre-trained on CEM500K learn features that are biologically relevant and resilient to meaningful image augmentations. Critically, we evaluate transfer learning from these pre-trained models on six publicly available and one newly derived benchmark segmentation task and report state-of-the-art results on each. We release the CEM500K dataset, pre-trained models and curation pipeline for model building and further expansion by the EM community. Data and code are available at https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10592/ and https://git.io/JLLTz.