1. Computational and Systems Biology
Download icon

Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes

  1. Juliane Liepe
  2. Hermann-Georg Holzhütter
  3. Elena Bellavista
  4. Peter M Kloetzel
  5. Michael PH Stumpf  Is a corresponding author
  6. Michele Mishto
  1. Imperial College London, United Kingdom
  2. Charité - Universitätsmedizin Berlin, Germany
  3. University of Bologna, Italy
  4. Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, United Kingdom
Research Article
  • Cited 27
  • Views 1,293
  • Annotations
Cite this article as: eLife 2015;4:e07545 doi: 10.7554/eLife.07545

Abstract

Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage.

Article and author information

Author details

  1. Juliane Liepe

    Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Hermann-Georg Holzhütter

    Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Elena Bellavista

    Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter M Kloetzel

    Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael PH Stumpf

    Imperial College London, Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, London, United Kingdom
    For correspondence
    m.stumpf@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Mishto

    Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. John Kuriyan, Howard Hughes Medical Institute, University of California, Berkeley, United States

Publication history

  1. Received: March 17, 2015
  2. Accepted: September 18, 2015
  3. Accepted Manuscript published: September 22, 2015 (version 1)
  4. Version of Record published: October 20, 2015 (version 2)

Copyright

© 2015, Liepe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,293
    Page views
  • 341
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Sebastian S James et al.
    Short Report

    Brain development relies on an interplay between genetic specification and self-organization. Striking examples of this relationship can be found in the somatosensory brainstem, thalamus, and cortex of rats and mice, where the arrangement of the facial whiskers is preserved in the arrangement of cell aggregates to form precise somatotopic maps. We show in simulation how realistic whisker maps can self-organize, by assuming that information is exchanged between adjacent cells only, under the guidance of gene expression gradients. The resulting model provides a simple account of how patterns of gene expression can constrain spontaneous pattern formation to faithfully reproduce functional maps in subsequent brain structures.

    1. Computational and Systems Biology
    2. Neuroscience
    Chen Chen et al.
    Research Article

    While animals track or search for targets, sensory organs make small unexplained movements on top of the primary task-related motions. While multiple theories for these movements exist—in that they support infotaxis, gain adaptation, spectral whitening, and high-pass filtering—predicted trajectories show poor fit to measured trajectories. We propose a new theory for these movements called energy-constrained proportional betting, where the probability of moving to a location is proportional to an expectation of how informative it will be balanced against the movement’s predicted energetic cost. Trajectories generated in this way show good agreement with measured trajectories of fish tracking an object using electrosense, a mammal and an insect localizing an odor source, and a moth tracking a flower using vision. Our theory unifies the metabolic cost of motion with information theory. It predicts sense organ movements in animals and can prescribe sensor motion for robots to enhance performance.