The enterrococcal cytolysin synthetase has an unanticipated lipid kinase fold

  1. Shi-Hui Dong
  2. Weixin Tang
  3. Tiit Lukk
  4. Yi Yu
  5. Satish K Nair
  6. Wilfred A van der Donk  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, United States
  3. Cornell High Energy Synchrotron Source, United States
  4. University of Illinois at Urbana-Champaign, United Kingdom

Abstract

The enterococcal cytolysin is a virulence factor consisting of two post-translationally modified peptides that synergistically kill human immune cells. Both peptides are made by CylM, a member of the LanM lanthipeptide synthetases. CylM catalyzes seven dehydrations of Ser and Thr residues and three cyclization reactions during the biosynthesis of the cytolysin large subunit. We present here the 2.2 Å resolution structure of CylM, the first structural information on a LanM. Unexpectedly, the structure reveals that the dehydratase domain of CylM resembles the catalytic core of eukaryotic lipid kinases, despite the absence of sequence homology. The kinase and phosphate elimination active sites that effect net dehydration are immediately adjacent to each other. Characterization of mutants provided insights into the mechanism of the dehydration process. The structure is also of interest because of the interactions of human homologs of lanthipeptide cyclases with kinases such as mammalian target of rapamycin (mTOR).

Article and author information

Author details

  1. Shi-Hui Dong

    Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  2. Weixin Tang

    Roger Adams Laboratory, Department of Chemistry, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  3. Tiit Lukk

    Cornell High Energy Synchrotron Source, Ithaca, United States
    Competing interests
    No competing interests declared.
  4. Yi Yu

    Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United Kingdom
    Competing interests
    No competing interests declared.
  5. Satish K Nair

    Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  6. Wilfred A van der Donk

    Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    vddonk@illinois.edu
    Competing interests
    Wilfred A van der Donk, Reviewing editor, eLife.

Copyright

© 2015, Dong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,184
    views
  • 628
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shi-Hui Dong
  2. Weixin Tang
  3. Tiit Lukk
  4. Yi Yu
  5. Satish K Nair
  6. Wilfred A van der Donk
(2015)
The enterrococcal cytolysin synthetase has an unanticipated lipid kinase fold
eLife 4:e07607.
https://doi.org/10.7554/eLife.07607

Share this article

https://doi.org/10.7554/eLife.07607

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Jiale Zhou, Ding Zhao ... Zhanjun Li
    Research Article

    5-Methylcytosine (m5C) is one of the posttranscriptional modifications in mRNA and is involved in the pathogenesis of various diseases. However, the capacity of existing assays for accurately and comprehensively transcriptome-wide m5C mapping still needs improvement. Here, we develop a detection method named DRAM (deaminase and reader protein assisted RNA methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m5C reader proteins (ALYREF and YBX1) to identify the m5C sites through deamination events neighboring the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide editing regions which are highly overlapped with the publicly available bisulfite-sequencing (BS-seq) datasets and allows for a more stable and comprehensive identification of the m5C loci. In addition, DRAM system even supports ultralow input RNA (10 ng). We anticipate that the DRAM system could pave the way for uncovering further biological functions of m5C modifications.