A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm

  1. Sylvia Fechner
  2. Luis Alvarez
  3. Wolfgang Bönigk
  4. Astrid Müller
  5. Thomas Berger
  6. Rene Pascal
  7. Christian Trötschel
  8. Ansgar Poetsch
  9. Gabriel Stölting
  10. Kellee R Siegfried
  11. Elisabeth Kremmer
  12. Reinhard Seifert
  13. U Benjamin Kaupp  Is a corresponding author
  1. Center of Advanced European Studies and Research, United States
  2. Center of Advanced European Studies and Research, Germany
  3. Ruhr-Universität Bochum, Germany
  4. Forschungszentrum Jülich, Germany
  5. University of Massachusetts Boston, United States
  6. Helmholtz-Zentrum München, Germany

Abstract

Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca2+ signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K+ channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes Ca2+ influx. Here, we identify in sperm of the freshwater fish Danio rerio a novel CNGK family member featuring non-canonical properties. It is located in the sperm head rather than the flagellum and is controlled by intracellular pH, but not cyclic nucleotides. Alkalization hyperpolarizes sperm and produces Ca2+ entry. Ca2+ induces spinning-like swimming, different from swimming of sperm from other species. The 'spinning' mode probably guides sperm into the micropyle, a narrow entrance on the surface of fish eggs. A picture is emerging of sperm channel orthologues that employ different activation mechanisms and serve different functions. The channel inventories probably reflect adaptations to species-specific challenges during fertilization.

Article and author information

Author details

  1. Sylvia Fechner

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Luis Alvarez

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Wolfgang Bönigk

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Astrid Müller

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Berger

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Rene Pascal

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Trötschel

    Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ansgar Poetsch

    Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Gabriel Stölting

    Institute of Complex Systems 4, Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Kellee R Siegfried

    Biology Department, University of Massachusetts Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Elisabeth Kremmer

    Institut für Molekulare Immunologie, Helmholtz-Zentrum München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Reinhard Seifert

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. U Benjamin Kaupp

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    For correspondence
    U.B.Kaupp@caesar.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Fechner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,029
    views
  • 514
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sylvia Fechner
  2. Luis Alvarez
  3. Wolfgang Bönigk
  4. Astrid Müller
  5. Thomas Berger
  6. Rene Pascal
  7. Christian Trötschel
  8. Ansgar Poetsch
  9. Gabriel Stölting
  10. Kellee R Siegfried
  11. Elisabeth Kremmer
  12. Reinhard Seifert
  13. U Benjamin Kaupp
(2015)
A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm
eLife 4:e07624.
https://doi.org/10.7554/eLife.07624

Share this article

https://doi.org/10.7554/eLife.07624

Further reading

    1. Structural Biology and Molecular Biophysics
    Chris van Hoorn, Andrew P Carter
    Research Article

    Ciliary rootlets are striated bundles of filaments that connect the base of cilia to internal cellular structures. Rootlets are critical for the sensory and motile functions of cilia. However, the mechanisms underlying these functions remain unknown, in part due to a lack of structural information of rootlet organization. In this study, we obtain 3D reconstructions of membrane-associated and purified rootlets from mouse retina using cryo-electron tomography. We show that flexible protrusions on the rootlet surface, which emanate from the cross-striations, connect to intracellular membranes. In purified rootlets, the striations were classified into amorphous (A)-bands, associated with accumulations on the rootlet surface, and discrete (D)-bands corresponding to punctate lines of density that run through the rootlet. These striations connect a flexible network of longitudinal filaments. Subtomogram averaging suggests the filaments consist of two intertwined coiled coils. The rootlet’s filamentous architecture, with frequent membrane-connecting cross-striations, lends itself well for anchoring large membranes in the cell.

    1. Structural Biology and Molecular Biophysics
    Jian Wu, Nisha A Jonniya ... Susan S Taylor
    Research Article

    Although the αC-β4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, local spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-β4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-β4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.