A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm

  1. Sylvia Fechner
  2. Luis Alvarez
  3. Wolfgang Bönigk
  4. Astrid Müller
  5. Thomas Berger
  6. Rene Pascal
  7. Christian Trötschel
  8. Ansgar Poetsch
  9. Gabriel Stölting
  10. Kellee R Siegfried
  11. Elisabeth Kremmer
  12. Reinhard Seifert
  13. U Benjamin Kaupp  Is a corresponding author
  1. Center of Advanced European Studies and Research, United States
  2. Center of Advanced European Studies and Research, Germany
  3. Ruhr-Universität Bochum, Germany
  4. Forschungszentrum Jülich, Germany
  5. University of Massachusetts Boston, United States
  6. Helmholtz-Zentrum München, Germany

Abstract

Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca2+ signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K+ channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes Ca2+ influx. Here, we identify in sperm of the freshwater fish Danio rerio a novel CNGK family member featuring non-canonical properties. It is located in the sperm head rather than the flagellum and is controlled by intracellular pH, but not cyclic nucleotides. Alkalization hyperpolarizes sperm and produces Ca2+ entry. Ca2+ induces spinning-like swimming, different from swimming of sperm from other species. The 'spinning' mode probably guides sperm into the micropyle, a narrow entrance on the surface of fish eggs. A picture is emerging of sperm channel orthologues that employ different activation mechanisms and serve different functions. The channel inventories probably reflect adaptations to species-specific challenges during fertilization.

Article and author information

Author details

  1. Sylvia Fechner

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Luis Alvarez

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Wolfgang Bönigk

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Astrid Müller

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Berger

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Rene Pascal

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Trötschel

    Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ansgar Poetsch

    Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Gabriel Stölting

    Institute of Complex Systems 4, Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Kellee R Siegfried

    Biology Department, University of Massachusetts Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Elisabeth Kremmer

    Institut für Molekulare Immunologie, Helmholtz-Zentrum München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Reinhard Seifert

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. U Benjamin Kaupp

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    For correspondence
    U.B.Kaupp@caesar.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Fechner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,035
    views
  • 514
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sylvia Fechner
  2. Luis Alvarez
  3. Wolfgang Bönigk
  4. Astrid Müller
  5. Thomas Berger
  6. Rene Pascal
  7. Christian Trötschel
  8. Ansgar Poetsch
  9. Gabriel Stölting
  10. Kellee R Siegfried
  11. Elisabeth Kremmer
  12. Reinhard Seifert
  13. U Benjamin Kaupp
(2015)
A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm
eLife 4:e07624.
https://doi.org/10.7554/eLife.07624

Share this article

https://doi.org/10.7554/eLife.07624

Further reading

    1. Structural Biology and Molecular Biophysics
    Mart GF Last, Leoni Abendstein ... Thomas H Sharp
    Tools and Resources

    Segmentation is a critical data processing step in many applications of cryo-electron tomography. Downstream analyses, such as subtomogram averaging, are often based on segmentation results, and are thus critically dependent on the availability of open-source software for accurate as well as high-throughput tomogram segmentation. There is a need for more user-friendly, flexible, and comprehensive segmentation software that offers an insightful overview of all steps involved in preparing automated segmentations. Here, we present Ais: a dedicated tomogram segmentation package that is geared towards both high performance and accessibility, available on GitHub. In this report, we demonstrate two common processing steps that can be greatly accelerated with Ais: particle picking for subtomogram averaging, and generating many-feature segmentations of cellular architecture based on in situ tomography data. Featuring comprehensive annotation, segmentation, and rendering functionality, as well as an open repository for trained models at aiscryoet.org, we hope that Ais will help accelerate research and dissemination of data involving cryoET.

    1. Structural Biology and Molecular Biophysics
    Sneha Menon, Subinoy Adhikari, Jagannath Mondal
    Research Article

    The mis-folding and aggregation of intrinsically disordered proteins (IDPs) such as α-synuclein (αS) underlie the pathogenesis of various neurodegenerative disorders. However, targeting αS with small molecules faces challenges due to the lack of defined ligand-binding pockets in its disordered structure. Here, we implement a deep artificial neural network-based machine learning approach, which is able to statistically distinguish the fuzzy ensemble of conformational substates of αS in neat water from those in aqueous fasudil (small molecule of interest) solution. In particular, the presence of fasudil in the solvent either modulates pre-existing states of αS or gives rise to new conformational states of αS, akin to an ensemble-expansion mechanism. The ensembles display strong conformation-dependence in residue-wise interaction with the small molecule. A thermodynamic analysis indicates that small-molecule modulates the structural repertoire of αS by tuning protein backbone entropy, however entropy of the water remains unperturbed. Together, this study sheds light on the intricate interplay between small molecules and IDPs, offering insights into entropic modulation and ensemble expansion as key biophysical mechanisms driving potential therapeutics.