A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm
Abstract
Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca2+ signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K+ channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes Ca2+ influx. Here, we identify in sperm of the freshwater fish Danio rerio a novel CNGK family member featuring non-canonical properties. It is located in the sperm head rather than the flagellum and is controlled by intracellular pH, but not cyclic nucleotides. Alkalization hyperpolarizes sperm and produces Ca2+ entry. Ca2+ induces spinning-like swimming, different from swimming of sperm from other species. The 'spinning' mode probably guides sperm into the micropyle, a narrow entrance on the surface of fish eggs. A picture is emerging of sperm channel orthologues that employ different activation mechanisms and serve different functions. The channel inventories probably reflect adaptations to species-specific challenges during fertilization.
Article and author information
Author details
Copyright
© 2015, Fechner et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,044
- views
-
- 522
- downloads
-
- 58
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.