Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling

  1. Claudio A Franco
  2. Martin L Jones
  3. Miguel O Bernabeu
  4. Anne-Clemence Vion
  5. Pedro Barbacena
  6. Jieqing Fan
  7. Thomas Mathivet
  8. Catarina G Fonseca
  9. Anan Ragab
  10. Terry P Yamaguchi
  11. Peter V Coveney
  12. Richard A Lang
  13. Holger Gerhardt  Is a corresponding author
  1. London Research Institute, United Kingdom
  2. The University of Edinburgh, United Kingdom
  3. Faculdade de Medicina Universidade de Lisboa, Portugal
  4. Cincinnati Children's Hospital Medical Center, United States
  5. Vesalius Research Center, Belgium
  6. National Institutes of Health, United States
  7. University College London, United Kingdom

Abstract

Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

Article and author information

Author details

  1. Claudio A Franco

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Martin L Jones

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Miguel O Bernabeu

    Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne-Clemence Vion

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Pedro Barbacena

    Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Jieqing Fan

    The Visual Systems Group, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Mathivet

    Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Catarina G Fonseca

    Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  9. Anan Ragab

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Terry P Yamaguchi

    Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter V Coveney

    Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Richard A Lang

    The Visual Systems Group, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Holger Gerhardt

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    For correspondence
    holger.gerhardt@mdc-berlin.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal procedures were performed in accordance with the United Kingdom Home Office Animal Act 1986 under the authority of project license PPL 80/2391.

Copyright

© 2016, Franco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,633
    views
  • 1,398
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claudio A Franco
  2. Martin L Jones
  3. Miguel O Bernabeu
  4. Anne-Clemence Vion
  5. Pedro Barbacena
  6. Jieqing Fan
  7. Thomas Mathivet
  8. Catarina G Fonseca
  9. Anan Ragab
  10. Terry P Yamaguchi
  11. Peter V Coveney
  12. Richard A Lang
  13. Holger Gerhardt
(2016)
Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling
eLife 5:e07727.
https://doi.org/10.7554/eLife.07727

Share this article

https://doi.org/10.7554/eLife.07727

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.