1. Cell Biology
  2. Immunology and Inflammation
Download icon

Immune surveillance of the lung by migrating tissue-monocytes

  1. Mathieu P Rodero
  2. Lucie Poupel
  3. Pierre-Louis Loyher
  4. Pauline Hamon
  5. Fabrice Licata
  6. Charlotte Pessel
  7. David A Hume
  8. Christophe Combadière
  9. Alexandre Boissonnas  Is a corresponding author
  1. University Pierre et Maria Curie, Sorbonne Universities, France
  2. The Roslin Institute, United Kingdom
Research Article
  • Cited 53
  • Views 5,079
  • Annotations
Cite this article as: eLife 2015;4:e07847 doi: 10.7554/eLife.07847

Abstract

Monocytes are phagocytic effector cells in blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells. ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and dendritic cells, without differentiating into macrophages.

Article and author information

Author details

  1. Mathieu P Rodero

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Lucie Poupel

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Pierre-Louis Loyher

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Pauline Hamon

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabrice Licata

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Charlotte Pessel

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. David A Hume

    Royal (Dick) School of Veterinary Studies, The Roslin Institute, Midlothian, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Christophe Combadière

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Alexandre Boissonnas

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    For correspondence
    alexandre.boissonnas@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experiment protocols were approved by the French animal experimentation and ethics committee and validated by "Service Protection et Santé Animales, Environnement" with the number A-75-2065. Sample sizes were chosen to assure reproducibility of the experiments and according to the 3R of animal ethic regulation.

Reviewing Editor

  1. Ronald N Germain, National Institute of Allergy and Infectious Diseases, United States

Publication history

  1. Received: April 1, 2015
  2. Accepted: July 10, 2015
  3. Accepted Manuscript published: July 13, 2015 (version 1)
  4. Version of Record published: August 3, 2015 (version 2)

Copyright

© 2015, Rodero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,079
    Page views
  • 886
    Downloads
  • 53
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Nicole L Nuckolls et al.
    Research Article

    Meiotic drivers are parasitic loci that force their own transmission into greater than half of the offspring of a heterozygote. Many drivers have been identified, but their molecular mechanisms are largely unknown. The wtf4 gene is a meiotic driver in Schizosaccharomyces pombe that uses a poison-antidote mechanism to selectively kill meiotic products (spores) that do not inherit wtf4. Here, we show that the Wtf4 proteins can function outside of gametogenesis and in a distantly related species, Saccharomyces cerevisiae. The Wtf4poison protein forms dispersed, toxic aggregates. The Wtf4antidote can co-assemble with the Wtf4poison and promote its trafficking to vacuoles. We show that neutralization of the Wtf4poison requires both co-assembly with the Wtf4antidote and aggregate trafficking, as mutations that disrupt either of these processes result in cell death in the presence of the Wtf4 proteins. This work reveals that wtf parasites can exploit protein aggregate management pathways to selectively destroy spores.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Lin Mei et al.
    Research Article Updated

    The actin cytoskeleton mediates mechanical coupling between cells and their tissue microenvironments. The architecture and composition of actin networks are modulated by force; however, it is unclear how interactions between actin filaments (F-actin) and associated proteins are mechanically regulated. Here we employ both optical trapping and biochemical reconstitution with myosin motor proteins to show single piconewton forces applied solely to F-actin enhance binding by the human version of the essential cell-cell adhesion protein αE-catenin but not its homolog vinculin. Cryo-electron microscopy structures of both proteins bound to F-actin reveal unique rearrangements that facilitate their flexible C-termini refolding to engage distinct interfaces. Truncating α-catenin’s C-terminus eliminates force-activated F-actin binding, and addition of this motif to vinculin confers force-activated binding, demonstrating that α-catenin’s C-terminus is a modular detector of F-actin tension. Our studies establish that piconewton force on F-actin can enhance partner binding, which we propose mechanically regulates cellular adhesion through α-catenin.