Immune surveillance of the lung by migrating tissue-monocytes

  1. Mathieu P Rodero
  2. Lucie Poupel
  3. Pierre-Louis Loyher
  4. Pauline Hamon
  5. Fabrice Licata
  6. Charlotte Pessel
  7. David A Hume
  8. Christophe Combadière
  9. Alexandre Boissonnas  Is a corresponding author
  1. University Pierre et Maria Curie, Sorbonne Universities, France
  2. The Roslin Institute, United Kingdom

Abstract

Monocytes are phagocytic effector cells in blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells. ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and dendritic cells, without differentiating into macrophages.

Article and author information

Author details

  1. Mathieu P Rodero

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Lucie Poupel

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Pierre-Louis Loyher

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Pauline Hamon

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabrice Licata

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Charlotte Pessel

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. David A Hume

    Royal (Dick) School of Veterinary Studies, The Roslin Institute, Midlothian, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Christophe Combadière

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Alexandre Boissonnas

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    For correspondence
    alexandre.boissonnas@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experiment protocols were approved by the French animal experimentation and ethics committee and validated by "Service Protection et Santé Animales, Environnement" with the number A-75-2065. Sample sizes were chosen to assure reproducibility of the experiments and according to the 3R of animal ethic regulation.

Copyright

© 2015, Rodero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,959
    views
  • 1,076
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mathieu P Rodero
  2. Lucie Poupel
  3. Pierre-Louis Loyher
  4. Pauline Hamon
  5. Fabrice Licata
  6. Charlotte Pessel
  7. David A Hume
  8. Christophe Combadière
  9. Alexandre Boissonnas
(2015)
Immune surveillance of the lung by migrating tissue-monocytes
eLife 4:e07847.
https://doi.org/10.7554/eLife.07847

Share this article

https://doi.org/10.7554/eLife.07847

Further reading

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Liyi Wang, Shiqi Liu ... Tizhong Shan
    Research Article

    Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.