Immune surveillance of the lung by migrating tissue-monocytes

  1. Mathieu P Rodero
  2. Lucie Poupel
  3. Pierre-Louis Loyher
  4. Pauline Hamon
  5. Fabrice Licata
  6. Charlotte Pessel
  7. David A Hume
  8. Christophe Combadière
  9. Alexandre Boissonnas  Is a corresponding author
  1. University Pierre et Maria Curie, Sorbonne Universities, France
  2. The Roslin Institute, United Kingdom

Abstract

Monocytes are phagocytic effector cells in blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells. ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and dendritic cells, without differentiating into macrophages.

Article and author information

Author details

  1. Mathieu P Rodero

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Lucie Poupel

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Pierre-Louis Loyher

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Pauline Hamon

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabrice Licata

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Charlotte Pessel

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. David A Hume

    Royal (Dick) School of Veterinary Studies, The Roslin Institute, Midlothian, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Christophe Combadière

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Alexandre Boissonnas

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Maria Curie, Sorbonne Universities, Paris, France
    For correspondence
    alexandre.boissonnas@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ronald N Germain, National Institute of Allergy and Infectious Diseases, United States

Ethics

Animal experimentation: All experiment protocols were approved by the French animal experimentation and ethics committee and validated by "Service Protection et Santé Animales, Environnement" with the number A-75-2065. Sample sizes were chosen to assure reproducibility of the experiments and according to the 3R of animal ethic regulation.

Version history

  1. Received: April 1, 2015
  2. Accepted: July 10, 2015
  3. Accepted Manuscript published: July 13, 2015 (version 1)
  4. Version of Record published: August 3, 2015 (version 2)

Copyright

© 2015, Rodero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,914
    Page views
  • 1,055
    Downloads
  • 81
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mathieu P Rodero
  2. Lucie Poupel
  3. Pierre-Louis Loyher
  4. Pauline Hamon
  5. Fabrice Licata
  6. Charlotte Pessel
  7. David A Hume
  8. Christophe Combadière
  9. Alexandre Boissonnas
(2015)
Immune surveillance of the lung by migrating tissue-monocytes
eLife 4:e07847.
https://doi.org/10.7554/eLife.07847

Share this article

https://doi.org/10.7554/eLife.07847

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.