Dissociable roles of the inferior longitudinal fasciculus and fornix in face and place perception

Abstract

We tested a novel hypothesis, generated from representational accounts of medial temporal lobe (MTL) function, that the major white matter tracts converging on perirhinal cortex (PrC) and hippocampus (HC) would be differentially involved in face and scene perception, respectively. Diffusion tensor imaging was applied in healthy participants alongside an odd-one-out paradigm sensitive to PrC and HC lesions in animals and humans. Microstructure of inferior longitudinal fasciculus (ILF, connecting occipital and ventro-anterior temporal lobe, including PrC) and fornix (the main HC input/output pathway) correlated with accuracy on odd-one-out judgements involving faces and scenes, respectively. Similarly, BOLD response in PrC and HC, elicited during oddity judgements, was correlated with face and scene oddity performance, respectively. We also observed associations between ILF and fornix microstructure and category-selective BOLD response in PrC and HC, respectively. These striking three-way associations highlight functionally dissociable, structurally instantiated MTL neurocognitive networks for complex face and scene perception.

Article and author information

Author details

  1. Carl J Hodgetts

    School of Psychology, Cardiff University, Cardiff, Wales
    For correspondence
    hodgettscj@cardiff.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Mark Postans

    School of Psychology, Cardiff University, Cardiff, Wales
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan P Shine

    School of Psychology, Cardiff University, Cardiff, Wales
    Competing interests
    The authors declare that no competing interests exist.
  4. Derek K Jones

    School of Psychology, Cardiff University, Cardiff, Wales
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew D Lawrence

    School of Psychology, Cardiff University, Cardiff, Wales
    Competing interests
    The authors declare that no competing interests exist.
  6. Kim S Graham

    Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff University, Cardiff, Wales
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jody C Culham, University of Western Ontario, Canada

Ethics

Human subjects: The study was approved by the School of Psychology, Cardiff University Ethics Committee. Written informed consent was obtained from each participant before taking part in the experiment, including consent to publish results.

Version history

  1. Received: April 2, 2015
  2. Accepted: August 28, 2015
  3. Accepted Manuscript published: August 29, 2015 (version 1)
  4. Version of Record published: September 29, 2015 (version 2)

Copyright

© 2015, Hodgetts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,134
    views
  • 327
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carl J Hodgetts
  2. Mark Postans
  3. Jonathan P Shine
  4. Derek K Jones
  5. Andrew D Lawrence
  6. Kim S Graham
(2015)
Dissociable roles of the inferior longitudinal fasciculus and fornix in face and place perception
eLife 4:e07902.
https://doi.org/10.7554/eLife.07902

Share this article

https://doi.org/10.7554/eLife.07902

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.